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• Main Flame Deflector (MFD) re-directs the plume 

– Direct plume impingement  harsh stress and thermal loads 

– Coated with the Fondu-Fyre refractory material 

• Shuttle era design required frequent and costly repairs: 

– Average cost of repair, per launch, is roughly $500K* (for MFD only) 

– 2-3 weeks of repair time 

• MFD re-design for the new launch complex: 

– Compatibility with Space Launch System (SLS) and commercial launch vehicles 

Motivation 
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• Guide MFD re-design with CFD  

– Fast simulation turn-around time 

• Support fast-paced design iterations 

– Reasonably accurate, time-dependent predictions of  

• Pressure loading 

• Heat flux 

• Traditional CFD analysis of wall heat flux 

– Isothermal wall assumption 

• Vast over-prediction (with hot plume impinging on cold wall) 

– Adiabatic wall + post analysis with empirical correlations 

• Dubious predictions for complicated flows 

– Lack of time-dependent response of the surface temperature 

– Thus, CFD thermal analysis of MFD was not used 

 

Motivation 
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• LAVA CFD code introduced conjugate simulations: 

– Tightly coupled fluid flow & surface material heat transfer 

– Predictive capability for MFD thermal environment 

• Developed by the authors at NASA ARC 

• High performance oriented 

• Handles Cartesian, arbitrary polyhedral unstructured & 

curvilinear meshes 

– Hybrid meshes are possible via an overset coupling 

– Adaptive mesh refinement for Cartesian meshes 

• 2nd order spatial and temporal accuracy 

• SST, SA and SA-DES turbulence models 

Launch Ascent Vehicle Aerodynamics (LAVA) 
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• Fluid domain: 

– Arbitrary polyhedral unstructured mesh 

– Polygonal prism boundary layer mesh 

– 3D Navier-Stokes equations 

• Solid domain: 

– 1D, unsteady heat conduction equation 

– Along rays for each fluid mesh face on the 

surface 

– Solid back assumed insulated 

Conjugate Simulation Method 

• Coupling: 

– Two-way information exchange at each iteration 

Temperature 

Heat flux 
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• MFD pressure and heat flux measured during launches 

– STS-133-134-135 

– 3 locations instrumented with COTS sensors which feature 

• Kulite – High speed pressure 

• Medtherm – Heat flux 

• Nanmac – Heat flux 

• Sensors were embedded in stainless steel encasing 

 

 

Test Application – STS -135 
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21 million polyhedral unstructured elements 

Orbiter, external tank were omitted 

Only nozzles of SRB’s included 

 

STS -135 :: Computational Setup 

Top sensor 

Middle sensor 

Bottom sensor 

Time step of 3.5e-5 seconds 

20 sub-iterations each time step 

Prismatic boundary layer mesh (y+<1) 
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• SA-DES turbulence model 

• Unsteady SRB plenum data was used from STS-1 

– Likely inconsistencies with STS-135 (current case) 

• Non-reacting, single species plume exhaust gas 

– Not expected to affect impingement heating 

• Water sound suppression system is neglected 

– Not expected to affect impingement heating 

– Affects wave propagation speed 

• These assumptions all contribute to temporal error 

• Solid particles from SRB’s omitted 

• MFD surface irregularities neglected 

• No MFD refractory material recession and surface reactions 

• Solid heat transfer is modeled as 1-dimensional 

STS -135 :: Computational Setup 
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• MFD surface material (Fondu Fyre) properties: 

STS -135 :: Surface Material Properties 

Thickness 6 in 

Density 2000 kg/m3 

Specific Heat Temperature dependent* 

Melting Temperature 1373 K 

Thermal Conductivity 1 W/(m.K) 

Thickness 1 in 

Density 8030 kg/m3 

Specific Heat 500 J/(kg.K) 

Melting Temperature 1700 K 

Thermal Conductivity 21.4 W/(m.K) 

• Sensors are embedded in stainless steel structures 

• Encasing is modeled as 3.5” diameter discs  

• Sensor encasing material (stainless steel) properties: 
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STS -135 :: MFD Temperature & Heat Flux 
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• Instantaneous pressure distribution over MFD 

– High pressure regions at the primary and secondary impingement locations 

– Near quasi-steady conditions reached around 0.6 sec 

STS -135 :: MFD Pressure 
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• Instantaneous temperature distribution over MFD 

– Temperature builds-up over time 

– Relatively cooler sensor locations (stainless steel) identified 

– Lack of water cooling results in wide spread melting 

STS -135 :: MFD Temperature 
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• Instantaneous heat flux distribution over MFD 

– High heat flux regions at the primary and secondary impingement locations 

– Similar pattern as the pressure distribution 

STS -135 :: MFD Heat Flux 
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• Peak Ignition Over Pressure (IOP) well predicted 

• CFD simulation seems to precede measurement by ~0.05 sec. 

– Difference maybe attributed to assumptions emphasized earlier 

– Particularly, the omission of water sound suppression system 

 

STS -135 :: Top Pressure Sensor 

Top 
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• Similar time shift as in the top sensor 

• CFD shows a dip, followed by a secondary peak (~0.4 sec) 

– Not observed in measurements 

– Reason is to be investigated (possibly also due to water system suppressing the IOP) 

 

 

STS -135 :: Bottom Pressure Sensor 

Bottom 
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• Same time shift issue appears for temperature and heat flux 

• Overall, well matched temperature climb profiles 

STS -135 :: Top Temperature Sensor 

Top 
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STS -135 :: Bottom Temperature Sensor 

Bottom 
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• The initial heat flux peak (~0.3 sec) not observed in measurements 

• Spikes in measurements were attributed to particle impingement  

• CFD prediction is conservative within reasonable margin 

– Heat flux is difficult to measure and simulate 

– Large uncertainties in both 

STS -135 :: Top Heat Flux Sensor 

Top 
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STS -135 :: Bottom Heat Flux Sensor 

Bottom 
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• A first-principles based analysis of MFD heating 

– Conjugate fluid flow/ solid heat transfer CFD simulation 

• Many simplifying assumptions were made 

– Physical and geometrical complexities/unknowns 

• Reasonable agreement with the measurements 

– Temporal discrepancy is observed, possibly due to water exclusion 

– IOP wave amplitude is accurately captured 

– Temperature predictions are very consistent 

– Heat flux predictions are conservative within reasonable margin 

• Keeping in mind the large measurement uncertainty in heat flux 

• Present method is: 

– Computationally affordable 

– Can be practically used to guide design process 

• Would benefit from further validation in simpler cases 

– Investigation of sensitivity to modeling simplifications 

Summary & Conclusions 


