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Background 

• NASA desires to build long duration storage of cryogenic 

propellants for various in-space uses 

– Upper stages 

– Depots 

– Tugs 

– Requires the use of Multilayer Insulation (MLI) 

• MLI Heat loads on orbit have been studied and modeled 

comprehensively for 50 years 

• MLI Heat loads during pad hold and ascent have been 

somewhat neglected 

– Transient nature of physics is intimidating 

– Some test data exists 

– Modeling? 

• Modeling required for complete end to end mission 

thermal modeling capability 

 



  
Goal 

• Develop software package to: 

– Predict tank internal pressure and bulk temperature values as a 

function of time starting at launch until reach steady state on 

orbit 

– Use tank independent architecture 

– To the best of ability utilize existing data sets 

• Compare software package to actual data sets produced 

after package complete 

 



  
Important Variables and Questions 

• Tank altitude versus time 

– Pressure versus altitude 

– Delta pressure across fairing  

• MLI thermal performance versus pressure 

– If know thermal performance versus time for one system does that 
apply across the board?  How much different? 

• Outgassing within MLI 

– How does this change thermal performance vs. pressure & time? 

– How does a substrate such as Spray On Foam Insulation (SOFI) 
affect pressure within the blanket? 

• Thermal mass of various components 

– Insulation components (MLI & SOFI) 

– Tank wall (based off of initial temperature gradients) 

• Distribution of heat within the tank 

– All to the liquid? 

– Convection off of the ullage wall? 

 



  
Simple, First Order Model 



  
Modeling Approach – Fluid & Energy Model 

• Multinode fluids model 
– Lumped liquid node 

– Lumped ullage node 

– Massless liquid/vapor interface node 
• Enables mass transfer between states 

• Allows non-saturated conditions 

• Solve using: 
– Conservation of mass 

– First law of thermodynamics 

– Second law of thermodynamics 

– Must include work done by liquid/ullage on each other due to pressurization 

– This implies that the bulk ullage and liquid masses are not at equilibrium 

• Energy distribution 
– All energy must first go through a wall node 

– Energy entering the wetted surface area goes straight to the liquid 

– Energy entering the dry surface area is conducted down along the wall to the L/V 
interface 

• Thus the dry ullage wall must have a temperature that is higher than the bulk liquid 

– The ullage gains energy by convecting off of the wall 

– The ullage gains mass and rejects energy by convecting on the liquid surface 

 
 



  
CRYOTE Testing vs Fill Level (Steady State) 
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θ = 0 is the top of 

the tank  
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Dominates 

Q0 is a function of initial fill level 



  
Modeling Approach – MLI Pressure 

• External pressure boundary condition 
– Can model pressure at every time step in between every layer 

• Requires time step on order of 0.001 s to fully capture physics (and not blow up 
the model) 

• Requires modeling the temperature of every layer at every time step, time steps 
on the order of 0.1 s to fully capture physics 

• Requires some knowledge of the outgassing of the foam/MLI system 

• No data exists to anchor a model, thus you are always right? 

– Can assume that the MLI during rapid pumpdown performs either similar to 
steady state curve or similar to previous testing at same pressure 

• Get pressure from altitude (standard atmpspheric model) 

• Altitude from time dependent functions for various launch vehicles 

– Can assume that heat load is directly time dependent based on previous 
testing (i.e. don’t care what pressure boundary condition as a function of 
time is) 

• What about thermal mass of MLI and foam? 
– Required to solve conservation of energy in the first approach 

• For 1 inch thickness, is roughly 10 kJ/m2 for foam 

• Similar for MLI 

– Can hand wave it away in other methods 

– Must account for thermal mass of tank 

 



  
Transient Temperature/Pressure 
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Multilayer Insulation Performance – Steady State 
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Cold Vacuum Pressure (millitorr)

N01 - Foil & Paper (60, 2.5, -)

N02 - Foil & Paper (40, 3.6, -)

N03 - Foil & Paper (80, 3.8, -)

N04 - DAM & Paper (30, 2.1, -)

N05 - DAM & Fabric (40, 3.0, 87)

N06 - DAM & Fabric (10, 2.6, -)

N07 - DAM & Net (40, 2.59, -)

N08 - DAM & Net (60, 1.41, 55) 

N09 - Perf DAM & Net (40, 4.3, -)

Notes:
1. Boundary Temperatures approximately 78 K  & 293 K.
2. Residual gas nitrogen.
3. Legend data (40, 2, 50) means: 40 layers, 2 layers/mm, 
and 50 kg/m3 bulk density.



  
“Rapid” Depressurization 



  
Heat Load vs. Time 

• MLSTC on left 

• MHTB below 



  
MLI Performance – Pump Down 



  
Input Variables 

• Working Fluid: Oxygen, Hydrogen, Nitrogen, Methane 

• Tank Shape: Geometry, Diameter, Cylindrical Length, Dome 
ratio, tank thickness, tank material (aluminum or stainless), 
vent diameter 

• Insulation Definition: Foam Thickness, MLI layers & Density 
(up to three sections of different densities) 

• Fluid Properties: Initial Liquid Temperature & Pressure 
(assume start saturated and rest of pressure is helium) 

• Simulation Scenario: 

– Pad Hold time (and ambient temperature) 

– Initial fill level 

– Type: Boil-off vs. pressure-rise 

– Ascent Model (Ball (slow), SMiRF (med), STS (Fast)) 

– How to determine tank ullage area mass (user input or calc using fill 
level & tank thickness) 

– Penetration heat load 

 

 



  
Application - MLSTC 

• Methane Lunar Surface Thermal Control Test 

• Glenn Research Center, SMiRF, 2010 

 

• Use liquid methane to simulate full life cycle of Altair 

(Lunar Lander) ascent engine liquid methane tanks 



  
MLSTC Test Article Configuration 
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• Dia. (Volume): 4 ft (30.9 ft3) 

• Surface area 50.4 ft2 

• Rated Pressure: 337 psig 

• Rated temperature: -320 F to +100 F 

• Material: Type 304 Stainless Steel 

• Weight: 1,300 Lbs. empty 

• ASME rated pressure vessel 

• Submersible pump for fluid mixing 

• Sparger bubbler bar for increasing 

methane temperature 

• 2-axis instrument rake for liquid & 

gas temperatures 

• Top ports for vent line (including 

sensor wires), fill line, and GHe 

pressurant 

• Bottom port for gaseous methane 

bubbler and pump wired 



  
Pre-Test Predictions 



  
Pre-Test Predictions - Zoom 



  
Pre-Test Predictions 



  
Ascent Boil-off Test 

• Tank topped off, brought to steady state at ambient pressure (~5 
hrs) 

• Turn on vacuum pumps 
– Only open 1 for first ~60 seconds 

– Open second after 60 seconds 

• Heat flow approaches steady state after ~30 hours 

• Temperature take ~120 hours (5 days) to meet steady state criteria 

• Steady state heat load of 6.51 W (WBT of 306 K) 
– Penetrations heat load = 2.94 W 

– MLI heat load = 3.57 W (LSF = 4.5) 

• Noticed large water background as within vacuum chamber (after 24 
was predominate gas in system). 

 

• Total Integrated heat load: 5700 kJ (914 kJ/m2) 

• MLI Integrated heat load: 4200 kJ (674 kJ/m2) 
– Assume penetration heat load of 3 W (actually probably varies a bit) 

• Excess Q caused by depressurization 2407 kJ (387 kJ/m2) 

 



  

Note: Predictions scaled based on surface area. 



  
Pre-Test Predictions 

Note: Predictions scaled based on surface area. 



  
Tank Energy 

• During the ascent, temperature of the tank (T11 & T12) around the 
flange drop from 140 K to 115 K 
– Steady state is balanced between thermal resistance 

through insulation and gas insulation in ullage 

– T2, T3, & T4 (top of tank) drop from 163 K to 117 K 

• Energy is rejected into liquid 

• Increases boil-off during pumpdown 

• Liquid level starts at 92.3 % full 
– 165.6 kg of tank mass (made of SS 316) 

• Integrate cpdT from start to finish (use NIST equations) 
– 8740 J/kg (CryoComp gives 8550 dH for SS304) 

• Product give energy input into liquid from tank 
– 1447 kJ (if assume T11/12 profile) 

• Previous chart: 
– Total 2402 kJ Assumed Launch Load 

– Remove Tank Energy input gives 956 kJ (60% reduction) 

– Results in 154 kJ/m2 MLI heat load over steady state 

– 3.6 Equivalent days 



  
Tank Temperatures 



  
Final Result 
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Questions 
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