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OUTLINE 

• Background and overwiev of LLR 

• Thermal issues of CCR in Space environment 

• 1-D model for Lunar Regolith simulation from HFE data 

• Design and model of Moonlight experiment 

• Preliminary thermal optical test description 
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Background 

• Laser Ranging is a technique which allows satellite 

tracking with the highest accuracy 

• Apollo 11, 14 and 15 deployed LLRA which are the only 

Apollo ERA experiments still producing data 
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  A new experiment: pro & cons 

• GSE technology has improved by a factor of more than 

100, such that the Apollo lunar arrays now contribute a 

significant portion of the ranging errors due to lunar 

librations (± 6 deg). 

• Optical performance depend on the refraction index, 

which is T dependent. The CCR must be as “isothermal” 

as possible 

Apollo CCR: 
Face Ø=38 mm 

Moonlight CCR: 
Face Ø=100 mm 

Signal return strengt ≈ 

(Face ø)4 
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Moonlight experiment layout 
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Thermal Model Issue I 

• One of the biggest issue of the CCR thermal model is 

the reproduction of the volumetric absorption in the FS 

• A proprietary sw has been developed by UMD to 

calculate the heat absorbed by the CCR all around the 

lunar orbit accounting for different shades 

• The thermal model mesh is interpolated in the optical 

mesh for which the Wien – Beer law is applied along the 

sun spectrum for several orbital positions. 

• The heat loads evaluated are interpolated back in the 

thermal mesh and loaded in Sinda 
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Thermal Model Issue II 

• The experiment must be considered for different missions 

configuration and deployment: manned, rover and lander 

• For this reason the lunar regolith behavior must be considered in the 

thermal model so it can account for (self)shadowing effect 

• Data from Apollo HFE and subsequent papers have been used to 

model the regolith thermo physical behaviour down to 3 m 

depth 

 
Apollo Mission Status 

15 

Probe 2 was not inserted to full depth because of problems with the Apollo 

lunar surface drill. Probe 2 still provides useful data to estimate heat flow 

in the lunar subsurface. 

Drill bore stems were redesigned for Apollo 16 and 17 missions. 

16 
Electrical cable was severed during initial deployment by crew. 

Contingency repair plan proposed was denied because of higher mission 

priorities. Cable strain-relief provisions were implemented on all cables 

17 Nominal deployment and full experiment operation 
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Data for HFE from Keihm et. al 

Some approximation have been made and not all parameters have been defined 

according to this table, exceptions are: 

=0.93; (0)=12%; d(t)=1.00014 - 0.01671 cos g - 0.000 14 cos 2g 

where in degrees g = 357.528 + 0.9856003 N  

Many papers written by M. G. Langseth (PI) S. J. Keihm and J. L. Shute 

(and many models).  
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1-D Regolith Model 

Block H=3 m Surface 1 X 1 m2 - 40 nodes 

The vertical elements subdision will be used for the 3-D model 

The block has been rotated to consider for Apollo 15 26° latitude 
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Regolith model T 
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1-D Model vs. Apollo 15 P1 

• Difference between the 1D model and the Apollo 15 data varies between 

0.9% and 1.3%. Match can be improved by raising Regolith density 

(detrimental effect on difference plot) 
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2nd surface FEP/AL 2 m blanket 
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Frascati SCF_LAB 

 The SCF (Satellite lunar laser ranging Characterization Facility) is a 

set of specialized instruments, which make possible the recreation 

of a realistic space environment around the tested CCRs and the 

concurrent monitoring of temperature variations of the tested 

payloads and of optical performance, in terms of FFDP and 

wavefront Interferogram  
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Some critical issues 

• CCR works on TIR effect. To fix a thermometer on the 

reflecting faces is extremely invasive (for the 

thermometer) 

• T measurent cannot be made while the CCR is exposed 

to the Sun simulator but we can take advantage of the 

much much bigger t of the reflector with respect to the 

thermometer. 

Giovanni O. Delle Monache et. al 
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Thermometers environment 

• Nominal heat flux absorbed by the 

thermometer due to TIR loss is  1.5 x 10-3 

W (Al or Ag coating spot?) 

• Nominal heat flux radiated by the 

thermometer due to TIR loss is  0.7 x 10-4 

W (360 K vs. 300 K); coating of the dome 

could be advantageous and cheap (TIR loss) 

• 4W Manganine 36 AWG 

• Thermal interface conductance 0.1 W/K (Hp: 

Stycast thickness =0.001 mm - contact factor 

0.1) 

 m = 23 mg 
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Diode thermalization on CCR 

 
CCR 

glue 

wire 

housing 

thermometer 
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Moonlight In the SCF 
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SCF Thermo-optical test 
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SCF Thermo-optical test 
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Hardware design for next test 

 

“Jigsaw” Sun shade: geometry and thermo 

optical properties optimized to reflect back to 

space as much Sun radiation as possible 

Inner conformal shield: to limit green 

house thermal budget in the CCR 

cavity 
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Hardware design for next test 

 

Breadbord for thermal interface 

study between CCR and mounting 

rings 

New concept of IR simulator for 

CCRs 
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Conclusions 

1. FFDPs measured in the preliminary test show encouraging performance of 
the CCR and the surrounding hardware 

2. During the test the half gradient along the CCR approched 1 °C despite 
external control coating was not applied to the external side of the 
payload 

3. Silicon diode thermometers are good choice if we want to glue them on 
CCR reflecting faces 

4. The regolith model is being used for science investigation about Apollo 11 
LLRA performance degradation possibly due to dust deposition 
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Questions? 

Thanks for your attention! 
 

Giovanni O. Delle Monache INFN LNF 

e-mail: dellemon@lnf.infn.it 
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Spares 
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1D Model SS 

Are 20000 Lunations enough for the model to reach SS? Environment 

alteration due to Astronauts EVA effect on the area evaluated to last 

7-8 years the Apollo 15 PSR 

We can consider T=T(t) during one Lunation at a depth such that we 

expect T=cost 
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Hardware design for next test 
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Manual Output Creator 

Thermal Desktop 

HeatLoad3D 

Create Batch File 

SliceFFDP_3 

PhaseToFFDP 

SiO2 Phase Errors 

TempToPhase 

Transpose 

All_Nodes_Temp..txt 

Intensity Chart 

+ Apollo 15,11 

Phase Error Map 

Temp_Char 

r.m.s Phase Chart 

HeatLoad 2.3 

HeatLoad 2.2 

HeatLoad 2.1 

Temp. 3.1 

Temp. 3.2 

Temp. 3.4 

Temp. 3.3 

Code V 

Phases ? FFDP ?? 

SliceFFDP 

Summary 
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LLRRA-21 Thermal/Optical Simulation 
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G. O. Delle Monache TFAWS 2013 – July 30, 2013 28 



  
Return Signal Strength 
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