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Major Drivers of Current Work
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® To provide computational tools as an economical option for developing
future space transportation systems (i.e. RLV subsystems development)

Impact on component design = Rapid turn-around of high-fidelity analysis
Increase durability/safety =~ = Accurate quantification of flow
(i.e. prediction of flow-induced vibration)

Impact on system performance = More complete systems analysis
using high-fidelity tools

® Targeft
Turbo-pump component analysis — Entire sub-systems simulation

Computing requirement is large:
= The goal is to achieve 1000 times speed up over what was possible in 1992



Objectives
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® To enhance incompressible flow simulation capability for developing
aerospace vehicle components, especially, unsteady flow phenomena
associated with high speed turbo pump.
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Current Challenges
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® Challenges where improvements are needed
- Time-integration scheme, convergence
- Moving grid system, zonal connectivity
- Parallel coding and scalability

® As the computing resources changed to parallel and distributed
platforms, computer science aspects become important.
- Scalability (algorithmic & implementation)
- Portability, fransparent coding, etc.

® Computing resources
- "6rid" computing will provide new computing resources for
problem solving environment
- High-fidelity flow analysis is likely to be performed using "super
node" which is largely based on parallel architecture
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** Parallel version :

*MPI and MLP parallel versions

e Structured, overset grid orientation

e Moving grid capability

 Based on method of artificial compressibility

e Both steady-state and time-accurate formulations

e 3rd and 5™-order flux difference splitting for convective terms

e Central differencing for viscous terms

e One- and two-equations turbulence models

e Several linear solvers : GMRES, GS line-relaxation, LU-SGS,
GS point relaxation, ILU(O)..,..

eHISTORY
** 1982-1987 Original version of INS3D - Kwak, Chang
**1988-1999 Three different versions were devoped :
INS3D-UP / Rogers, Kiris, Kwak
INS3D-LU / Yoon, Kwak
INS3D-FS / Rosenfeld, Kiris, Kwak
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e Time-integration scheme
Artificial Compressibility Formulation
- Introduce a pseudo-time level and artificial compressibility
- Tterate the equations in pseudo-time for each time step until
incompressibility condition is satisfied.
Pressure Projection Method
- Solve auxiliary velocity field first, then enforce

incompressibility condition by solving a Poisson equation
for pressure.
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® Time History of Stagnation Point
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INS3D Parallelization

MPI MPI
® INS3D-MPI cPU.
(coarse grain) ‘Memory
Group 1 Group 2 Group N
ﬁ,; - ,;;,
® INS3D-MPI / Open MP <>
MPI (coarse grain) + OpenMP (fine grain) ’ OpenMP CPU OpenMP
Implemented using CAPO/CAPT tools NS, threads 1-,threads
Group 1 . .... Group N
MLP Process 1 MLP Process 2
Common /local’ a3, hb Common /local/ aa,hb
i 2,35
® TNS3D-MLP Zones 14N e oastrg i ypen T oS
330 nanosecond . .
® @ 0
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Inlet Guide Vane (IGV)
15 Blades

*Pitch, p = 24 degrees
*Blade Inlet Angle (mean), gy, = 90 degrees
*Blade Exit Angle (mean), 3,5y, = 45 degrees

Clearance between IGV and Impeller, x = 0.12 inches

Impeller

*6+6+12 Unshrouded Design

*Pitch, p = 60 degrees

*Blade Inlet Angle (mean), =23 degrees

*Blade Exit Angle (mean), B;,,,, = 65 degrees

*Clearance between blade LE and Shroud, r = 0.0056 inches
*Clearance between blade TE and Shroud, x = 0.0912 inches

imp,1

Clearance between Impeller and Diffuser, r = 0.050 inches

Diffuser

23 Blades

*Pitch, p = 15.652 degrees

*Blade Inlet Angle (mean), B4; , = 12 degrees
*Blade Exit Angle (mean), 3 , = 43 degrees
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!y, TEST CASE : SSME Impeller

INS3D-MLP/OpenMP vs. -MPI/OpenMP 60 zones / 19 2 Million points
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Impeller Technology Water Rig
Baseline SSME/ATD HPFTP Class Impeller

ProE
Surface
Triangulation

Inlet Guide Vane

Impeller

Diffuser
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Overset Grid System

Inlet Guide Vanes
15 Blades

23 Zones

6.5 M Points

Diffuser

23 Blades
31 Zones
8.6 M Points
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RLV 2rd Gen Turbopump
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grid for tip )
Unshrouded Impeller Grid : clearance grid
6 long blades / 6 medium blades /12 short blades
60 Zones / 19.2 Million Grid Points hub
Overset connectivity : DCF (B. Meakin) grid

Less #han 156 orphan points.
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SCRIPTING CAPABILITY FOR GRID GENERATION

> Require expertise to build scripts the first time
> Allow rapid re-run of entire grid generation process
> Easy to do grid refinement and parameter studies
> Easy to try different gridding strategies
> Documentation of gridding procedure
> Written in Tcl scripting language
> WOorks on UNIX, LINUX and WINDOWS
> integer and floating point arithmetic capability
> modular procedure calls

> easy to add GUI later if needed
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% Scripting Capability
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INPUT AND OUTPUT
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Current example: one script for each component
(IGV, Impeller and Diffuser)

Input

= profile curve for hub and shroud in PLOT3D format
(rotated by script to form surface of revolution)

> blade and tip surfaces in PLOT3D format

> Parameters that can be changed
- global surface grid spacing (on smooth part of geometry)
- local surface grid spacing (leading/trailing edges, etc.)
- hormal wall grid spacing (viscous, wall function)
— marching distance
— grid stretching ratio
- humber of blades

Output

18 > overset surface and volume grids for hub, shroud, blades
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Scripting Capability

INLET GUIDE VANES AND DIFFUSER

Old IGV New IGV  Old DIFF New DIFF
No. of points (million) 7.1 1.1 8.0 1.6

Time to build 1/2 day 10 sec. 1/2 day 8 sec.
Script timings on new grids based on SGI R12k 300MHz processor

Time to build script = 1 day for IGV, 1 day for DIFF




Scripting Capability
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IMPELLER

Ol dIMP NewlIMP OIdTOT New TOT
No. of points (million) 19.2 57 34.3 8.4

Time to build ~2weeks 50 sec.

Time to build IMP script : 3 to 4 weeks

20



0/0&

@,&

21

&é:&' o o o )
% Scripting Capability
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FUTURE PLANS FOR SCRIPTING

= Complete domain connectivity capability in scripts
(X-ray maps and DCF input file creation)

> Flow solver input creation in scripts

> Perform more tests on different parameters

= Perform tests on different geometries, e.g., volute, inducer
= Improve robustness (error traps, wider range of cases)

> Generic template for each component

> Graphical interface front end
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FIRST Rotation : Impeller rotated 30-degrees

,, VELOCITY MAGNITUDE PRESSURE



s VELOCITY MAGNITUDE PRESSURE
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FIRST Rotation : Impeller rotated 230-degrees

= VELOCITY MAGNITUDE PRESSURE



SSME-rigl / Initial start
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VELOCITY MAGNITUDE

- 34.3 Million Points

- 800 physical time steps in one
rotation. One and a half impeller
rotations are completed.

*One physical time-step requires
less then 20 minutes wall time
with 128 CPU's on SGI Origin
platforms. One complete rotation
requires one-week wall time.
*Code optimization is currently
underway. For small case, 50%
improvement is obtained by
employing a better cash usage in
the code. Less than 10 minutes
per time step will be obtained by
the end of September 2001.
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Data compression by J. Housman & D.Lee

Before Compression After Reconstruction

N Grid File Compression



Data Compression
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Before Compression After Reconstruction

Total Velocity Contours
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STATIC/DYNAMIC STRESS ANALYSIS
FOR TURBOPUMP SUB-SYSTEMS

START

1

NEW CONDITIONS
INTERFACE »| STRUCTURAL
‘ | ZIPPER/GRID LOADS
CFD GRID T
PRESSURE
TEMPERATURE FEM GRID
[ |
FLUIDS STRUCTURES [, | STRESS |_,
INS3D NASTRAN/ANSYS ANALYSIS
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® |LUMPED LOAD APPROACH
- FAST, NEEDS FINE GRIDS, ADEQUATE FOR UNCOUPLED METHOD

® CONSISTENT LOAD APPROACH (CONSERVES LOADS)
- ACCURATE FOR COUPLED METHODS, EXPENSIVE
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CONSISTENT LOAD APPROACH USING VIRTUAL SURFACE VALIDATED IN ENSAERO

By Guru Guruswamy
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® STRUCTURES WILL BE MODELED USING
BEAM, PLATE, SHELL AND SOLID FINITE ELEMENTS

® |[INHOUSE AND COMMERCIAL FEM CODES WILL BE USED

PRELIMINARY RESULTS FOR HUB USING 3D PLATE FEM

COARSE GRID
230 NODES TYPICAL
414 FE STRUCTURAL

31 By Guru Guruswamy



¢

»@r
«F
% Summary
& !
&/ Ames Research Center

A4

®Unsteady flow simulations for RLV 2" Gen baseline turbopump for one and
half impeller rotations are completed by using 34.3 Million grid points model.

® MLP shared memory parallelism has been implemented in INS3D, and
benchmarked. Code optimization for cash based platforms will be completed
by the end of September 2001.

® Moving boundary capability is obtained by using DCF module.

® Scripting capability from CAD geometry to solution is developed.

® Data compression is applied to reduce data size in post processing.

® Fluid/Structure coupling is initiated.
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