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Thermal Technology Development at GSFC

• Two-Phase Systems
– Heat Pipes and Variable Conductance Heat Pipes
– Capillary Pumped Loops
– Loop Heat Pipes
– Vapor Compression Systems (Heat Pumps)
– Phase Change Materials

• Variable Emittance Surfaces
• Advanced Coatings
• High Conductivity Materials
• Electrohydrodynamic (EHD) Thermal Control Systems



Heat Pipes
• Heat Pipes use capillary forces generated by a wick structure and the latent heat of 

vaporization of a working fluid to transfer large amounts of heat at nearly constant 
temperature

• Heat is input to one end of the pipe where it vaporizes the working fluid
• The vapor is transported to the condenser end of the pipe where it is condensed and 

the heat is rejected
• The condensed fluid travels back to the evaporator section in a capillary wick 

structure, which can be grooves in the wall, screens, sintered metal, or other porous 
material

Vapor Flow
Condensation

Vaporization
Liquid Flow

Heat In Heat out

wick structure



Heat Pipe Technology

1. Heat pipes are considered a standard off the shelf technology.
1. Used routinely in many Spacecraft applications
2. Copper/water pipes found in many laptops and video game consoles

2. Development efforts at GSFC
1. Flight of HPP mid-deck experiment in early 90’s, refinement of the GAP 

heat pipe analytical model
2. Flight of cryogenic heat pipes on the shuttle in the mid 90’s
3. Qualification testing of Thermacore Copper/Water Heat Pipes in 2000 

1. Successfully completed Vibration and TV, including freeze/thaw cycles
2. Promising diode action near 0 C as H2O freezes, demonstrated restart under 

load - Ideal for electronics cooling
4. Use of an ethane heat pipe for the Swift XRT instrument 2002, operates at 

-50 C with a 10 watt heat load



Variable Conductance Heat Pipes
VCHP’s

• VCHP’s utilize a reservoir containing inert gas (nitrogen) to block part or all of the 
condenser, thus providing temperature control of the heat pipe to  +/- 2 C

• Requires electrical controller and heater on the reservoir, linked to a feedback thermistor
• VCHP’s are off the shelf technology, but not extensively used
• GSFC applications on TPF flight experiment and Swift Loop Heat Pipe  
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Capillary Pumped Loops

• Capillary pumped loops (CPL’s) are two-phase heat transfer devices which use capillary 
forces for heat acquisition and fluid pumping with no moving parts

– Transfers high heat loads over long distances with  vibration free operation and passive control
– Factor of 30x improvement in wicking height over conventional heat pipes - greatly improves 

ground testability and and eases spacecraft integration
– Diode action offers shut down capability, minimize heater power requirements
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Capillary Pumped Loop Technology
CPL

• CPL concept originated at the Lewis Research Center
• Developed at GSFC starting in the early 80’s
• Numerous test beds and shuttle flight experiments

– CPL GAS and Hitchhiker flight experiments in 1985 and 1986
• Proof of Concept

– CAPL 1 and CAPL 2 flight experiments in 1994 and 1995
• Point Design for the EOS-AM (now TERRA) Spacecraft
• Single pump CPL verified for flight applications - “Starter Pump CPL”

– TPF Flight Experiment in 1997
• Proof of Concept for multiple pump loop

– Multiple pump CPL’s 
• CAPL 3 flight experiment manifested on STS-108, Nov 2001
• CCQ flight experiment (awaiting flight opportunity)



Starter Pump Capillary Pumped Loop
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CPL’s on TERRA (EOS-AM)
• Terra launched December 18, 1999
• Two-phase loops (CPLs) are on SWIR, 

TIR and MOPPIT instruments
• On the next day, the first CPL system in 

a flight mission was started successfully.
• All 3 CPLs continue to demonstrate 

reliable, stable thermal control for their 
instruments





TERRA CPL Typical Layout



TERRA CPL - Coldplate
• Coldplate provides the thermal sink for the instrument.
• Contains the Capillary Starter Pump (Evaporator) that provides the capillary 

pumping head via porous wick.



TERRA Normal Operations
The Radiator, Liquid Lines and Reservoir Lines have orbital variations and 
vary depending on the instrument activities.  The coldplate remains at a 
constant temperature during all activities.
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Reservoir Setpoint Change



HST



HST SM 3B Servicing Mission
STS - 109  Jan 2002

– Near Infrared Camera and Multi Object Spectrometer (NICMOS) 
instrument installed on HST during Servicing Mission 2, Feb 1997

• Detectors cooled by nitrogen ice contained  in a dewar
• Thermal short in dewar detected shortly after SM2
• Expected NICMOS lifetime of 4.5 years shortened to 1.7 years

– On SM 3B, the astronauts will install a brayton cycle, mechanical 
cryo-cooler to cool NICMOS detectors and resume operations

• Mechanical refrigerator must be capable of developing in excess of 7 watts 
of cooling power at 70 K

• Flexible Capillary Pump Loop built by Swales Aerospace selected to 
transfer energy from cryocooler to external radiator

– Precursor check-out mission (HOST) flown on STS-95 in October 
1998 to verify cryocooler and CPL operation in micro-gravity -
Highly Successful.



HST with CPL Radiators
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HST with CPL Installed
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HST Thermal Components Assembly
PRESSURE PLATE TO
STIS BULKHEAD INTERFACE
(CHO-THERM NOT SHOWN)

DELRIN HEAT
PIPE  SPACERS

CPL SADDLE (SADDLE
COVER NOT SHOWN)



HOST Carrier Installed in the Payload Bay



CPL Temperature Control Law Response
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Multiple Evaporator Capillary Pumped Loop
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CAPL 3 Flight Experiment
NRL/NASA Experiment



CAPL 3 Flight Experiment

• Follow on to CAPL 1 (STS-60, 2/94) and CAPL 2 (STS-69, 9/95) flight 
experiments

• Joint Naval Research Lab (NRL)/NASA partnership which will meet 
technology objectives for both the Department of Defense and NASA 

• Two-phase ammonia thermal control system consisting of a capillary 
pumped loop with multiple capillary  evaporators and parallel direct 
condensation radiators

• Includes a capillary starter pump and a back pressure regulator to assist 
with start-up in micro-gravity

• Will demonstrate heat load sharing between evaporators which provides 
heating from the loop as well as cooling

• Currently manifested on STS-108 in Nov 2001
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CAPL 3 Radiator Assembly (Upside Down)
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CAPL 3 Mission Description

• Mounted aboard GAS bridge structure inside the shuttle bay
• 72 hour mission duration requested in SF1628
• Nominal power: 800 W, max power approximately 1600 W
• GSFC POCC for real-time Hitchhiker payload operation
• Shuttle bay nadir facing (-ZLV), or colder orientation, for at least 54 hours 

required, with 18 hours in bay to space attitude requested



CAPL 3 Ambient Testing - 1/8/99
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CCQ Objectives
• Modify Two Phase Flow (TPF) experiment, flown in 1997

– Demonstrate proposed TRW CPL on the Shuttle using TPF CPL with 
an added evaporator and a capillary starter pump

– Test new evaporator containing advanced wick which prevents vapor 
blow-by (Air Force Development) and increases pumping capability

– Test mini-Loop Heat Pipes built by the Russians and provided by the 
Air Force

• WHAT ARE WE GOING TO SHOW?
– High reliability CPL system suitable for use in spacecraft applications
– Provide flight  verification of mini-LHP design

• WHEN?
– Actual flight date will depend on manifesting availability



TPF/CCQ Schematic
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Cryogenic Capillary Pumped Loop 
(CCPL) 

Condenser Spool

Cold
Reservoir

Evaporator

Liquid Cooled Shield

Liquid Return Line
Reservoir Line

Vapor Line

Cooling Source

Hot Reservoir

Capillary Pumped Loops (CPLs) are 
capable of transporting large amounts of 
heat over long distances and provide 
tight temperature control.  They utilize 
capillary pumping forces (no moving 
parts).

• Several Cryogenic CPL’s have been developed and tested
– Transport  of 0.5 to 12 watts in 80 to 100 Kelvin range with Nitrogen
– Transport  of 0.25 to 3.5 watts in 35 to 40 Kelvin range with Neon
– Temperature can be controlled to any desired level within the operating range

• CCPL can be used in a cryogenic thermal bus or as a temperature control device
• CCPL flight experiment successfully flown on STS-95  in October 98

– Demonstrated start-up and transport up to 2.5 W@ 80 to 100 Kelvin
– Included breadboard superconductor bolometer from Code 690
– Future development - Operation in the 2 to 4 Kelvin range with Helium



CCPL Flight Unit Design
CCPL-5
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5th Generation CCPL
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2.54 cm

CCPL-5 Weight:     191 gms
Working Fluid:        Nitrogen
Transport Length:   0.25 m
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Ground Testing
CCPL-5 Results (Cont'd)
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Loop Heat Pipes (LHP’s)
• Description - LHP’s are basically similar to CPL’s - transfer large amounts of heat via 

the heat of vaporization of the working fluid, and can be shut down
• Invented in Russia in the 70’s
• LHP’s compensation chamber (reservoir) is attached directly to the evaporator, versus a 

remote location for CPL’s
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OPERATING TEMPERATURE
NO CONTROL OF COMPENSATION CHAMBER
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OPERATING TEMPERATURE
ACTIVE CONTROL OF COMPENSATION CHAMBER
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LHP Technology

• Both Swales and Dynatherm LHP designs were flown in 1997 shuttle
experiments - Many Russian loops have also flown.

• Programs
– GLAS Instrument (GSFC) - 2 LHP’s for laser and electronics 
– EOS/AURA, TES instrument (JPL) - 5 LHP’s for electronics, cryocooler
– GOES/NEXT (Hughes) - 6 LHP’s for star tracker, electronics
– VASMIR (JSC) - high flux LHP for rocket cooling
– M1 Tank (US Army) - electronics cooling, testing up to 5 G’s
– Nanosat & Mars Rover (JPL) - mini-LHP development

• Baselined for the MARS 03 Rover mission
– Swift BAT Instrument (GSFC)- 2 loops cool detector plate
– Boeing/Hughes 702 satellites use LHP’s with deployable radiators

• Several on-orbit and operating
– Mini-LHP development program
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SWIFT/BAT LHP 
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Mini-LHP
• Miniaturization of existing 

technology
– currently have 1/2” dia evaporators
– goal of 1/4” diameter evaporator
– up to 10 of watt transport over < 1 

meter length
• Application to nanosats, 

electronics cooling
– allows isolation of spacecraft interior 

during cold case
– especially suitable for fleets of S/C 

• Recent SBIR Phase 2 with TTH 
Research Inc./Thermacore

• HQ Award to GSFC (CETDP)

Mini-Loop Heat Pipe



Russian mLHP’s



Mini-LHP Technology Issues

• mLHP performance does not scale linearly
– Thermal coupling (heat leak) between compensation chamber and 

evaporator affects start-up capability and operating temperature 
– Previous experience on Capillary Pumped Loops shows that 

performance affected by size

• Manufacturing capabilities on a small scale
– Wick fabrication and secondary wick installation

• Development of a high conductance condenser
• Thermal/Fluid dynamics on a small scale
• Gravitational affects on liquid/vapor fluid management



Heat Pumps

• Description  - Heat pumps provide heat rejection at an elevated 
radiator temperature 
– Utilized in hot environments or to reduce radiator area (S/C real estate).  

• Commercial units are unfit for vacuum and microgravity.
• Program in FY 99/00 - collaboration with the University of Maryland

– Breadboard heat pump completed and tested in a vacuum environment
• Upgrade of commercial unit for vacuum (approx 200 W)
• Still need to address micro-gravity issues

– Mini-heat pump development study (10 to 20 W) in FY 00
• Potential Applications - ULDB (balloon) thermal control in hot 

environments, ISS, Lunar Base, Hi-power Comsats, Laser cooling 
• Penalty of weight and power
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Phase Change Thermal Storage



Variable Emittance Thermal Control Surfaces
(VaryE)

• Variable emittance surfaces - Goal of 0.3 to 0.8 delta emissivity 
– Provides autonomous thermal control via a signal - “electronic louver”.  

Three technologies in work - electrochromic, electrophoretic, and MEMS 
mini-louvers.

• Program - Baselined for thermal control demo on ST-5 mission (‘04)
– ST-5 funding from TRL Level 5 to flight
– Air Force SBIR for electro-chromic (Ashwin-Uhas)
– GSFC SBIR for electrophoretic (Sensortex)
– CETDP for MEMS louver (APL/Sandia)

• Application/Payoff - Generic applicability to all S/C and instruments, 
large and small.  Potentially very inexpensive as a solid state device



MEMS Louvers



Thermal Coatings Technology on the EO-1 
S/C Launched in November 2000

• Two Flight Thermal Coatings – White Paint
– Z93P White Paint: Calorimeter (S/N 032) Current technology -

control sample
– AZW/LA-II low alpha inorganic White Paint: Calorimeter 

(S/N 033) New technology
– Both coatings developed by AZ Technology

• Z93P White Paint (S/N 032)
– � = .17, �h = .87

• AZW/LA-II White Paint (S/N 033)
– � = .11, �h = .86

• Flown on calorimeters built at GSFC (reduce S/C thermal effects)



Calorimeters on EO-1

• The Calorimeters are mounted on a bracket and attached to the C-C 
radiator (Bay 4)

• The LA-II coating (“low alpha”) has a very low solar absorptance value 
when compared to other space application white paints.
– A lower solar absorptance can provide improved radiator performance 

when exposed to UV. This improvement can lead to smaller radiator 
sizes, saving spacecraft mass. 

• LA-II optical properties verified maintaining stability with improved solar
absorptivity vs. Z93

• LA-II may provide cooler radiator temperatures when exposed to UV: 
– Data shows 5°C cooler in UV

• Baselined for the Swift Spacecraft (but it’s expensive)
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TSS Geometric Math Model
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Transient Flight Data vs. Thermal Model Analysis
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High Conductivity Materials

• Lightweight electronics box (K1100) - IRAD exercise

• Incorporated K1100 composite panels as electrical  box 
mounting panels/radiators on WIRE (1999)

• MAP  - gamma alumina at low temperatures (2001)
• Carbon-Carbon radiator on EO-1 (2000) 
• Diamond Material for electronics cooling
• SBIR’s with Ktech for Annealed Pyrolitic Graphite (APG)

– Thermal Straps
– Cryogenic Radiators for possible NGST application



Carbon-Carbon

• Carbon-Carbon (C-C) - Composite material that uses carbon for 
both the fiber and the matrix material
– produced in a high temperature furnace in a lengthy process

• C-C has high thermal conductivity, good strength, and is lighter 
than Aluminum
– C-C used in high temperature applications such as aircraft brakes,

Space Shuttle wing leading edge
• Limited applications elsewhere to date, primarily due to cost and 

production lead time
• Carbon-Carbon Spacecraft Radiator Partnership (CSRP) formed to 

promote the use of Carbon-Carbon as a radiator material
– informal partnership with members from government and industry 



C-C Radiator on EO-1

• The New Millenium Program’s EO-1 mission provided an 
opportunity for the CSRP to fly a C-C radiator
– C-C radiator provided by CSRP at “no cost” to NMP

• The C-C radiator replaced one of 6 structural panels on the EO-1 
Spacecraft - It is both a radiator and a structural member

• C-C Radiator consists of 1” Al honeycomb with 0.020” C-C face-
sheets, approximately 28” by 28”
– Utilizes 2 plies of P30X carbon fibers with carbon matrix established 

by Chemical Vapor Infiltration
– Epoxy coated for strength and contamination protection
– Aluminum inserts bonded to honeycomb core for mounting of 

electronics boxes and attachment to the S/C
– Exterior coated with Silver Teflon for heat rejection
– Flight qualification testing completed at GSFC 



EO-1 C-C RADIATOR



CC Radiator Thermistor Layout
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C-C Radiator Lessons Learned

• C-C Radiator technology was successfully validated 
– C-C radiator panels can be used to reduce S/C weight
– They can also be used as part of the S/C structure

• C-C has a niche, especially for high temperatures
– Application on the Solar probe

• C-C still needs further development (my opinion)
– Reduction in fabrication time and cost - high conductivity 

“traditional” composites are competitive
– CTE Interface issues with heat pipes 

• Redundancy a good idea - we flew the spare panel
• Possible follow-on missions: C-C foam for low CTE 

mirrors/optical benches



CVD Diamond as a Heat Spreader
• Diamond is a unique substance. 

– Hardest known material 
– High thermal conductivity
– Excellent mechanical strength 
– Electrical isolator, and may be used as a semiconductor. 

• Recently received funding from HST to evaluate sample application as 
diode heat spreader

• Testing of Hi-K Diamond Underway (Norton Diamond)
– TV testing for conductivity measurements completed -

conductivity approx. 1000 W/mK
– Vibration test in sample application in work (HST relay cooling)



Encapsulated APG Material System
Carbon Fiber Composite 

Encapsulant

Annealed Pyrolytic 
Graphite

Encapsulated APG Skin

Honeycomb Core

� Skin thermal conductivity 
- 1300 W/mK (273 K)
- 2500 W/mK (120 K)

� Density less than 2.0 g/cm3

� Stiffness and strength equivalent 
to baseline designs

Basal plane thermal conductivity of APG

APG Properties
Property Room Temperature (25°C) Cryogenic (100°K)
Thermal Conductivity 1700 W/mK (a & b - Axis)

10 W/mK (c - Axis)
3400 W/mK (a & b - Axis)
50 W/mK (c - Axis)

Mass Density 2.26 g/cc 2.26 g/cc
Coefficient of Thermal
Expansion

-1.0 ppm/K (a & b - Axis)
25.0 ppm/K (c - Axis)

-1.0 ppm/K (a & b - Axis)
25.0 ppm/K (c - Axis)

Thermal Diffusivity 9.8 cm2/s -
Specific Heat 0.84 kJ/kgK -
Tensile Strength 1,000 ksi (a & b - Axis)

0 Ksi (c - Axis)
1,100 ksi (a & b - Axis)
0 Ksi (c - Axis)



Flexible Thermal Strap
Fabrication



Thermal Strap
Performance

Mass Comparison
Mass Reduction %

Aluminum
218.00
518.00

58%APG

Thermal Performance Comparison

Power Resistance (K/w) Conductance (w/K)
Aluminum 20.68 3.16 0.32
APG 21.04 2.96 0.34
Thermal Outgassing Properties

% TML * % CVCM ** % WVR *** Limits (%)
APG/Foil 0.024 0.010 0.020 1.000
Supreme 10ANHT 0.770 0.060 0.100 0.100

* Total Mass Loss
** Collected Volatile Condensable Materials
*** Water Vapor Regain



Next Generation Space Telescope - GSFC Concept



Fabrication of Radiator Panels
Phase I Results

K13C2U/RS-3
[0/90/90/0]

APG Inset

K13C2U/RS-3
[0/90/90/0]

Part Number Panel Thickness
Nominal/Measured

(inch)

Panel Width (inch) Panel Length (inch)

KTC/IN10176A-01 .088/.092 2.999 5.999
KTC/IN10176A-02 .064/.068 3.001 6.000
KTC/IN10176A-03 .048/.050 3.001 6.000
KTC/IN10177-01 .088/.093 3.001 6.000



Panel Evaluation -- Measured Properties
Phase I Results

Conductivity -- Cryogenic Temperatures
Thermal Conductivity Vs. Temperature

Before and After Thermal Cycling (TC)
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Electrohydrodynamic Pumping (EHD)

• Description - EHD forces can be used to enhance heat transfer, provide 
fluid management, separate gas/liquid mixtures, and pump fluids.
Utilizes electrical forces only, with no mechanical moving parts.

• Working fluids - Dielectric refrigerant such as freon 134a, 
hydrocarbon, or nitrogen (cryogenic)

• Program includes partnerships with the University of Maryland and 
Texas A & M
– EHD flow management test bed
– EHD single phase and two-phase thermal control loops
– Cryogenic EHD pumping test (LN2)
– MEMS level cooling

• Application - Heat exchangers, ISS environmental systems, thermal 
control systems, MEMS level micro-channel cooling of electronics
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EHD PHENOMENA

• Electrohydrodynamics (EHD) is an interdisciplinary 
phenomena dealing with the interactions between 
electric fields and flow fields
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EHD PUMP DESIGN



HOLLOW TUBE - RING ELECTRODE 
DESIGN



Electrohydrodynamics Laboratory
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EHD Pump Design



EHD Cryo/Loop Design
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Prototype EHD Ambient 
Temperature Loop



Conduction Pump Performance
Ambient Temperature Loop
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Cryogenic - Loop Pump Results
with LN2
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EHD MEMS Cooling Concept 
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Future Technology Needs

• Dimensional stability of very large structures
• Diode action to minimize heater requirements
• Higher heat flux 

– lasers, electronics, propulsion systems 
• Cryogenic temperature regime

– that’s where the science is headed
• Increasingly integrated designs (e.g., NGST)
• Fleets of micro/nano spacecraft have special problems

– small Cp and need for common design (e.g.,ST5)
• Challenging thermal sinks (e.g., Solar Probe, ULDB flights)

Gullies on Mars
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