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Quench Module Insert (OMI)
Microgravity Materials Processing

 What is microgravity materials processing?

— Creating desired thermal gradient and solid/liquid
interface front movement for a given processing
temperature in a microgravity environment




Quench Module Insert (OMI)

Science Requirements

Metals and Alloys Processing

Currently Supporting Two Investigators
Sample Processing from 600°C to 1400°C
Various Sample Materials up to 1cm diameter

Sample Gradients up to 150°C/cm for a Icm aluminum sample at
1100°C processing

Sample Isothermality of £10°C over a 10cm length of a Icm dia.
aluminum sample

20cm hot zone, four independently controlled zones; 20cm of
translation, approximately 18cm of sample processing

Sample Quench rates providing solidification of a 2cm length of a Icm
diameter aluminum sample in 2seconds




Quench Module Insert (OMI)
Interfaces

MSL
(ESA Team)

Sample Container A
SACA Team) _ .- --




Quench Module Insert (OMI)
Interface Requirements

e [Integration in the ESA’s Materials Science Laboratory

— 3kW Max. Power/Cooling Allocation (currently showing a max.
power requirement of less than 450W at 1400°C)

— Fail Safe Loss of Cooling (max. 600ml of expelled volume)

— Touch Temperature (>49°C) during all phases of processing

— Limits on waste heat losses to the ESA thermal chamber (100W)
— Max. Shell temperatures

— Max. Coolant return temperatures

— 190mbar pressure drop at max. coolant flow conditions




Quench Module Insert (OMI)
Design Layout

* Bridgman-type, Vacuum
Furnace

o Four heated zones
* One interchangeable cold zone
* Phase Change Quench System

» Highly Efficient Insulation
Design




Quenc

h Module Insert (OMI)
Design Layout

] Copper [] Alumina

[H Stainless [ ] Boron Nitride
[ Aluminum [ Veltherm
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B Graphite ] Water




Quench Module Insert (OMI)
Design Layout




OMI Thermal Analysis and Design
Methodology

* Modeling via TRASYS II, SINDA/G, and SINDAS85
— One overall axi-symmetric SINDA/G model (>5000 nodes) per Unit

» FEasily reconfigured for any translation position via user constants

* Detailed component level temperature summary tables and plots generated
for each case

» User defined sinroutines for helical heat transfer coefficient, uniform power
distribution, summary tables, plot files

— Three TRASYS Il models (translatable bore, jacket, and PCD)

» Easily reconfigured for any translation position or SACA geometry/surface
properties via users constants

* Preliminary Hot Zone Test Article to verify insulation and thermal
performance in a static test condition (heavily instrumented)

o Hot Zone Test Article model correlation results and lessons learned
are applied to Bread Board and Flight models

 Bread Board model correlation results and lessons learned are
applied to both the Bread Board and Flight models




OMI Thermal Analysis and Design
Methodology




OMI Thermal Analysis and Design
Methodology
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OMI Bread Board Testing and

Instrumentation Approach

HZTA Testing focused on determination of insulation performance and
verification of heat flow mapping (losses, contact coefficients)

Bread Board focused on overall insert performance, chill block
performance, hot zone control, and heat flow mapping

Furnace instrumentation placed to map the flow of heat from the heaters at
various areas to obtain a total energy balance and evaluation of the system
performance

Overall energy balance was obtained real-time by adding calculations to the
data system for coolant loops to compare to power draw

Heat flow between components was verified by measuring temperature at the
components know conductive heat flow paths

Detailed understanding of zone-to-zone interaction as a function of set points
was required. Needed to assess what actual average bore temperature was
obtained for a given zone’s set point

Assess the ability to maximize the booster#l set point temperature and maintain
control of booster#2 to maximize gradient capability




OMI Bread Board Testing and
Instrumentation Approach




OMI Breadboard Thermal Probe
Requirements

* Provide repeatable and accurate measurements of furnace
performance

— Thermal gradient measurement
» Surface properties
* Material thermal conductivity
* Gradient zone instrumentation location and spacing

— Heated zone measurements
» Surface properties
* Heated zone instrumentation location
» [Instrumentation isolation

* Provide performance measurements while simulating a science
sample
— Heater power
— Cold zone heat load




OMI Thermal Probe Design

Parameters
» Surface properties e [nstrumentation
— High emissivity preferred — Location and spacing in the
— Stable under vacuum gradient zone

— Location and isolation in
the heated zone

e Materials selection

— Low thermal conductivity

_ 1400°C processing » Science sample loading

temperature

Cold Gradient Bst |




Preliminary Thermal Probe Designs

* High Gradient Furnace with Quench (HGFQ)

— 1.6cm OD stainless steel probe

— Performance at 1100 °C processing
e 169-218 °C/cm gradient
o [100W steady state heater power (inert gas furnace)

* Hot Zone Test Article (HZTA)
— 1.6cm OD stainless steel probe

— Performance at 1200/1150/1100/1100°C processing
e [82°C/cm gradient
* 342W steady state heater power

 OMI PDR Probe Design

— 1.3cm OD aluminum nitride probe

— Performance at 1200/1150/1100/1100°C processing
» [32°C/cm gradient
o 298W steady state heater power




Design Features for Gradient

Measurement
e | 6¢cm solid tantalum — Beads positioned at probe
thermal probe centlerline with a 30° entry
. angle
— SIS GRS G 02 — Beads potted into position with
— Low thermal conductivity of epoxy

2.8 Btu/hr in °F

o Four Type C tantalum
sheath thermocouples

Gradient Zone

— Thermocouple spacing of 0.3
in

— Sheaths run along surface
grooves




Design Features for Heated Zone

Measurements
* Graphite ring black body ¢ Type C tantalum sheath
sensors thermocouples
—  Surface emissivity of 0.9 — Sheaths run along surface
— Maximize heat transfer to grooves

sensors without
compromising heat transfer
to probe
e Sensors isolated from Heater Zone
probe
— Dimpled tantalum shields
wrapped to cut radial losses

— Multiple tantalum disks cut
axial losses

— Beads potted into graphite
rings with epoxy




Thermal Gradient Analysis Results

Thermal Probe Gradient Analysis Results
1200/1140/1080/1100 Heater Settings
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Heated Zone Analysis Results

Thermal Probe Heater Zone Analysis Results
1200/1140/1080/1100 Heater Settings
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Breadboard Thermal Probe Layout

o Four centerline thermocouples in gradient zone

o Six isolated 0.25 inch blackbody sensors in heated zones
— One sensor in Bstl, Bst2, and guard and three sensors in longer
main
— One thermocouple per sensor

Cold Gradient Bit ] Bat 2

Zone Zone




Flight Thermal Probe
Requirements

Provide repeatable and accurate measurements of heated
zone

— Blackbody sensor design concept
— Limited to 12 thermocouples by MSL

Incorporate MSL required safety thermocouple
Maximize probe life

— FEliminate gradient measurement

— Cold zone performance monitored by PT1000s
Minimize weight

— Decrease use of tantalum material




Flight Thermal Probe Design
Features

Six 0.5 inch blackbody sensors in heated zones
— Graphite or silicon carbide coated boron nitride rings
— Redundant thermocouples in each sensor except main central sensor
— Sensors isolated from one another by axial shielding

Weight reduction

— Tantalum shaft with thin walled tantalum brackets
— Substitution of stainless steel where temperatures allow

Cold Gradienr Bst 1 it 2 Guard

Zone Zonec

a Type © Thermecouple

s Twpe K Safety Thermocouple




MI Bread Board Correlation and
Performance

QMI Bread Board Model Results; 27July01 - Probe Results
(1200/1200/1200/1200;C settings with Velthermed Control Black Bodies; Black Body Probe)
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MI Bread Board Correlation and
Performance

QMI Bread Board Model Results; 27July01 - Probe Results
(800/800/800/800;C settings with Velthermed Control Black Bodies; Black Body Probe)
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OMI Bread Board Correlation and
Performance

QMI Bread Board Model Results; 27July01 - Furnace Overview
(1200/1200/1200/1200;C settings with Velthermed Control Black Bodies; Black Body Probe)
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OMI Bread Board Correlation and
Performance
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Summary and Conclusions

* Current Bread Board testing indicates that the QMI thermal design models
and methods are very accurate
— Probe gradient zone temperature results have been used to judge initial furnace

positioning measurement and have aided in trouble-shooting 5-8mm offsets of the
furnace/probe positioning

— Thermal probe black body zone readings have been used to troubleshoot the
temperature control system. Control thermocouple attachment methods have been
evaluated based upon the black body temperature readings obtained in the
main/guard zones

—  One simplified SACA prototype run has shown the ability to produce greater than
90°C/cm thermal gradients in an 11.7mm diameter pure aluminum sample at a
900°C sample processing temperature

* Results obtained and design lessons learned from the bread board testing are
being “‘flowed up” to the flight design. The QMI bread board is providing
invaluable information on the capabilities and evaluation of the flight design.

»  Currently retrofitting the control instrumentation for the hot zones
* Additional testing is soon to begin and will include quench testing




	Return to Main Menu
	Return to Table of Contents
	Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

