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ABSTRACT 

This paper describes research done to apply the Fractional Step Method to finite-element 
simulations of natural convective flows in a directionally solidified metal alloy casting. 
 
The Fractional Step Method (FSM), also known as the projection method and as the splitting 
method, has been applied commonly to high Reynolds number flow simulations, but is less 
common for low Reynolds number flows, such as natural convection in permeable media.  The 
FSM offers increased speed and reduced memory requirements by allowing the non-coupled 
solution of the pressure and the velocity components. 
 
The FSM is expected to offer significant benefits for predicting flows in a directionally solidified 
alloy, since other methods presently employed are not efficient.  Previously, the most suitable 
finite-elements based method for predicting flow in a directionally solidified binary alloy has 
been the penalty method.  The penalty method has the disadvantage that it requires the coupled 
solution of the velocity components using direct matrix solvers, due to the penalty term.  The 
FSM allows the decoupled iterative solution of the finite element equations, thereby greatly 
increasing the efficiency of the method.  The FSM also lends itself to parallel processing, since 
the velocity component stiffness matrices can be built and solved independently of each other. 
 
Numerical simulations are now commonly used to predict macrosegregation in directionally 
solidified castings.  In particular, the finite-element simulations can predict the existence of  
“channels” within the processing mushy zone and subsequently “freckles” within the fully 
processed solid, which are known to result from macrosegregation, due to thermosolutal 
convection of the melt during the solidification process.  Freckles cause strong material non-
uniformities in the castings that are therefore scrapped. 
 
The phenomena of natural and thermosolutal convection in an alloy undergoing directional 
solidification will be explained.  The momentum and continuity equations for natural convection 
in a fluid, a permeable medium, and in a binary alloy undergoing directional solidification will 
be presented.  Finally, results for natural convection in a pure liquid, natural convection in a 
medium with a constant permeability, and for a fluid layer overlying a mushy zone solidifying 
directionally will be presented. 



INTRODUCTION 

Natural convection occurs in many physical situations.  Its most common occurrence arises from 
thermal gradients skewed to the direction of gravity in a gas or liquid.  Thermally driven natural 
convection can also occur in permeable media.  Density driven natural convection also occurs in 
more complex situations, such as in a liquid metal alloy undergoing directional solidification. In 
the latter case, the force that drives the fluid motion stems from a combination of density 
differences driven by thermal and concentration gradients in the liquid, and is referred to as 
thermosolutal convection. 
 
The ultimate goal of the work described here is to develop a mathematical model and 
subsequently the capability to simulate the fluid flow occurring in a directionally solidifying 
alloy, using the fractional step method.   The fundamental equations describing flow in a 
directionally solidifying alloy are complicated.  In addition, implementation of the FSM is 
challenging.  For this reason, the FSM is first applied to the two-dimensional equations 
governing natural convection in a single-phase fluid that can be treated as containing a single 
constituent.  Next, the FSM is applied to the equations governing natural convection in a 
permeable medium, containing a single-phase fluid of one constituent. Finally, the FSM is 
applied to the equations governing natural convection in a binary alloy undergoing directional 
solidification. 
 
This paper is laid out as follows.  The next section discusses the phenomena occurring in a 
directional solidifying alloy that contribute to convection, and the need to understand these 
flows.  Then fundamentals of the FSM are discussed, followed by the application of the FSM to 
the equations governing flow in a fluid and in permeable media.  Results of simulations for these 
two different flow situations are presented and discussed next.  Then the FSM as applied to the 
equations governing flow in a binary alloy undergoing directional solidification is presented. 
Finally, results of simulations for this flow situation are presented and discussed. 

DIRECTIONAL SOLIDIFICATION 

DEFECTS IN ALLOYS AND THEIR CAUSES 

The directional solidification process is used to produce aircraft engine turbine blades.  Casting 
defects often necessitate that the entire casting be scrapped, which is very costly.  A major defect 
that leads to scrapped castings is that of concentration non-uniformities.  These are a direct result 
of the fluid motion that takes place in the melt during the solidification process, and affects the 
consistency and integrity of the casting’s structural properties.  Segregation that produces 
concentration non-uniformities is classified under microsegregation or macrosegregation, 
depending on the length scale.  Microsegregation is a phenomenon that occurs over a distance 
approaching the size of the primary dendrite arm space and depends on the shape of the dendrites 
and solute diffusion in the mushy zone [1,2,3].  Macrosegregation involves compositional 
differences over distances approaching that of the size of the casting or ingot; it is due to 
convection in the melt, and is large in scale compared to that caused by diffusion. 
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During vertical directional solidification, the casting is cooled from below.  This inhibits 
convection by imposing a stable temperature gradient.  Strictly speaking, due to the stability 
impressed on the melt by cooling it from below, it is expected that thermal convection will be 
mostly suppressed.  However, because of the partitioning of the solute constituents at the 
solidifying interface, density gradients due to differential solute concentrations are generated in 
the interdendritic liquid that interact with the temperature field and trigger convection [4,5,6].  
This combination of phenomena is often referred to as thermosolutal or double-diffusive 
convection.  Thermosolutal convection is often the main cause of severe macrosegregation in 
castings. 
 
One of the most perverse macrosegregation defects is “freckles”, which are caused by 
convection.  These defects are made up of long narrow streaks oriented roughly parallel to the 
direction of gravity.  Freckles have solute concentrations that vary significantly from that of the 
surroundings [7].  The freckles make the casting prone to fatigue cracking at the interfaces.  
Therefore, the castings are scrapped.   Several experimental works with nonmetallic transparent 
systems [8,9,10] have verified this. 

PRESENT SIMULATION CAPABILITIES 

Previous research, related to the one proposed herein, as described in References 
[11,12,13,14,15] has come a long way in simulation of solidification processes.  The models 
currently used include interdendritic diffusion, thermosolutal convection, and solute and energy 
conservation.  Since the mushy zone is an assembly of dendrites of complicated morphology, it 
is modeled as a region of anisotropic permeability with no predetermined size or shape [16]. 
 
Presently, the size of the domains that can be simulated is limited because of the large amount of 
computer resources required.  This limitation is attributed mainly to two issues: 1) In order to 
adequately capture the diffusion processes occurring in the mushy zone, very fine meshes are 
required, on the order of the primary dendrite arm spacing, and 2) since permeability theory is 
used to model the varying liquid fraction of the mushy zone, the only numerical algorithms that 
have been successfully employed to solve the momentum equation stiffness matrix use direct 
matrix solvers. 
 
When discretizing using finite element models, the penalty method is presently the algorithm 
employed most frequently for the solution of the solidification momentum equation stiffness 
matrices.  The pressure is not calculated directly in the penalty method formulation.  Rather, the 
pressure term is eliminated by equivalencing it to the continuity equation (which, numerically, 
has a value very near zero) times a very large penalty parameter [17].  All velocity components 
are calculated simultaneously at each time step.  Therefore, for a three-dimensional finite-
element computation domain consisting of N nodes, the momentum equation stiffness matrix has 
a size of order 3N X 3N.  The stiffness matrix generated by the penalty method requires direct 
matrix solvers, due to the numerical stiffness introduced by the penalty term and due to the 
permeability term [11,12]. 
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The computer resources required by mixed formulations are even more than for the penalty 
method, since the matrices generated by a mixed formulation are non-symmetric [17].  The 
pressure is calculated with no approximations; therefore there are four unknowns per node, 
making the stiffness matrix size of order 4N X 4N.  Since direct formulations characteristically 
produce very large ill-formed stiffness matrices, direct formulations are normally used only for 
calibration of the penalty and other methods [11]. 
 
The Galerkin-Least-Squares method was used in the 3D computations described in References 
[15,18], and allowed for simulations in somewhat larger domains.  However, this method is also 
restricted and very difficult to use. 
 
The attractive feature of the FSM is that the velocity components and the pressure can be de-
coupled and solved independently.  This leads to stiffness matrices that are much smaller and 
therefore much more manageable.   In fact, it makes it possible to perform simulations in much 
larger domains that were previously prohibitive.  The FSM is described next. 

FUNDAMENTAL PRINCIPLES OF THE FRACTIONAL STEP METHOD 

The FSM has been used extensively for solution of the incompressible Navier-Stokes equations 
in Computational Fluid Dynamics (CFD).  Chorin [19,20,21] introduced the method over thirty 
years ago and Temam [22] independently developed similar ideas.  A general description of its 
implementation is discussed here. 
 
Beginning with the dimensionless form of the incompressible Navier-Stokes equation and 
continuity: 

 2n 1 n
n 1 n 1 n n n

1 p
t Re

+
+ +

−
− ∇ = −∇ − ⋅∇ +

∆
u u u u u f  (1.1) 

 0∇ ⋅ =u  (1.2) 

where the velocity has been discretized in time, the viscous and pressure terms are treated 
implicitly and the convective and forcing term are treated explicitly.  This equation is split 
into two steps, the intermediate “viscous” step: 

nf

 2n 1 n
n 1 n n n

1
t Re

+
+

−
− ∇ = − ⋅∇ +

∆
u u u u u
%

% f  (1.3) 

and the projection or “inviscid” step: 

 ( )2n 1 n 1
n 1 n 1 n 1

1 p
t Re

+ +
+ +

−
− ∇ − = −∇

∆
u u u u

%
% +  (1.4) 
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Taking the divergence of equation (1.4) and dropping the term 2
n 1

1
Re +∇ u% , the equation for the 

pressure is obtained. 

 2 n 1
n 1p

t
+

+
∇ ⋅

∇ =
∆
u%  (1.5) 

The reason most often cited for removing this term is that the intermediate velocity profile is 
projected into an “inviscid” vector space, orthogonal to the intermediate “viscous” space [23,24].  
Some references treat the viscous term explicitly [25] in equation (1.3) so that it does not appear 
in equation (1.4).  However, explicit treatment of the viscous term restricts numerical stability, 
particularly for low Reynolds number flows.  Other references include a more mathematically 
pure derivation [26,27].  In these references, the FSM derived above is modified as follows: 

The pressure in equation (1.4) is replaced with 2tp
Re

ψ ψ∆
= − ∇ : 

 ( )2n 1 n 1
n 1 n 1 n 1 n 1

1
t Re Re

ψ ψ+ +
+ + + +

− − ∇ − = −∇ − ∇∆  
u u u u

%
% 2t∆ 

  (1.6) 

The following terms are removed from equation (1.6) to take on the same form as equation (1.4), 
without the implicit viscous term: 

 n 1 n 1
n 1t

ψ+ +
+

−
= −∇

∆
u u%  (1.7) 

Applying the Laplace operator to equation (1.7), multiplying both sides by t
Re
∆ , and substituting 

into equation (1.6) reduces equation (1.6) to equation (1.7).  Therefore, removing these terms is 
mathematically correct. 
 
Taking the divergence of equation (1.7) yields a Poisson equation for ψ  instead of p: 

 2 1
1

n
n t

ψ +
+

∇ ⋅
∇ =

∆
u%  (1.8) 

and the pressure at the end of the time step is calculated as: 

 2
n 1 n 1 n 1

tp
Re

ψ ψ+ + +
∆

= − ∇  (1.9) 

Whether calculating the pressure from equations (1.6), (1.8), and (1.9) is more accurate than 
calculating it directly from equations (1.4) and (1.5) is application dependent and must be tested 
in practice [26]. 
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THE ACCURACY OF THE FRACTIONAL STEP METHOD 

A number of authors have predicted the accuracy of the FSM for incompressible flow [26-29].  
The general consensus is that the velocity can be determined to second-order accuracy.  
However, there is disagreement on pressure.  Some claim the pressure can be determined to 
second order accuracy [30,31], while others claim that the very nature of the FSM limits the 
pressure to first-order accuracy no matter what steps are taken to improve the method [28,29].  
Fortunately, there is consistent agreement on how to improve its accuracy. 
 
The three main methods of ensuring acceptable accuracy for the FSM are: 
 

1) Accurate selection of boundary conditions for the intermediate velocity as suggested by 
Kim and Moin [32]. 

2) Accurate selection of boundary conditions for the pressure as suggested by Orszag et al. 
[33] and E. and Liu [24,34]. 

3) The use of pressure-correction schemes as demonstrated by Van Kan [31], Bell et al. 
[30], Quartapelle [25], and Gresho [35,36]. 

 
The first two items hint at one of the inherent stumbling blocks of the FSM [28]. That is, there is 
only one set of the “real” boundary conditions: the boundary condition for the divergence-free 
velocity.  Since the splitting of the Navier-Stokes equations into two steps requires two sets of 
boundary conditions, one must be very careful in setting up these boundary conditions. 
 
The third item substitutes the calculation of the pressure at every time step with an “incremental” 
pressure calculation.  That is, the pressure is adjusted or corrected at every time step relative to 
the previous time step’s pressure. 

MATHEMATICAL MODEL FOR NATURAL CONVECTION: WITH AND WITHOUT 
PERMEABILITY 

The developments of the equations for the solution of Navier-Stokes equations for natural 
convection in a single-phase, single-constituent fluid and in a permeable medium are very 
similar.  The only difference is the permeability term.  Therefore, the development of the 
equations for a permeable medium is developed here.  The equations for natural convection in a 
fluid can be obtained by removing the permeability term. 

DEVELOPMENT OF DIMENSIONLESS MOMENTUM EQUATION FOR NATURAL 
CONVECTION IN A PERMEABLE MEDIUM 

Using the Brinkman and Boussinesq approximations [37-39], the equations of motion for a fluid 
layer overlying a porous medium are: 
 
 
 
Momentum: 
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 ( ) 12
0 p

t
ρ µ µ −′∂ ′ ′ ′ ′ ′ ′ ′ ′ ′+ ⋅∇ = −∇ + ∇ − + ′∂ 

u u u u K u ρ ′g  (2.1) 

and Continuity: 

 0′ ′∇ ⋅ =u  (2.2) 

where the permeability tensor K  is defined from the Darcy equation [40]: ′

 ( p ρ
µ

)′
′ ′ ′ ′= − ∇ −

Ku g  (2.3) 

The primes indicate dimensional terms. Equation (2.1) shows the permeability term as a tensor to 
account for its anisotropy.  For the analysis described in this section, K is assumed to be 
isotropic, therefore the permeability term will be shown as a scalar term. 
 
For convenience, the components of the hydrostatic pressure (based on the reference density) are 
separated from the pressure: 
 

 ( )*
0 x yp p g x g yρ′ ′ ′ ′ ′= + + ′  (2.4) 

where  is a modified pressure, and the reference density *p′ 0ρ  is defined as the density of the 
fluid at T = .  The gradient of the pressure can be written as: 0T
 

 *
0p p ρ′ ′ ′ ′∇ = ∇ + ′g  (2.5) 

The linear Boussinesq approximation gives ( )0 T 01 T Tρ ρ β ′ ′ = + −  .  After substituting 
equation (2.5), the dimensional momentum equation becomes: 
 

 (* 2 1
T 0

0

1 p K T
t

ν ν β
ρ

−′∂ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ ⋅∇ = − ∇ + ∇ − + −
′∂

u u u u u )T ′g                      

The equations are non-dimensionalized according to the following reference variables: 
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2*

* * 0
0* 2

0

2

0

2

, ,

ˆ

β

ρ

τ
τ

= ∆

′ ′ ′
= = =

′
= =

′∇ = ∇ =

′ ′′ −
= =

∆

′
= =

uu

gg

T

T

T

Characteristic Length H

Characteristic Velocity V g T H
x yx y
H H V

Dpp where p
p H

KH Da
H

T TT
g T
t Ht where

D

 (2.6) 

For convenience, drop the * from p and organize according to the following dimensionless 
parameters: 
 

 

3

: ,

:

T
T

T

T

g T HThe Rayleigh Number Ra
D

The Prandtl Number Pr
D

β
ν

ν

∆
=

=
 (2.7) 

This results in the dimensionless momentum equation: 

 2 1

T T TT

1 1 Pr Pr ˆp D
t Pr Ra Ra RaPr Ra

−∂
+ ⋅∇ = − ∇ + ∇ − +

∂
u u u u ua T g  (2.8) 

The dimensionless continuity equation has the same form as the dimensional version: 
 

 0∇ ⋅ =u  (2.9) 

APPLICATION OF THE FRACTIONAL STEP METHOD TO THE MOMENTUM 
EQUATION FOR NATURAL CONVECTION IN A PERMEABLE MEDIUM 

In order to build stable stiffness matrices for the finite element method, equation (2.8) is 
rearranged to treat the viscous term and permeability term implicitly and all other terms are 
moved to the right hand side to be treated explicitly.  The FSM requires that the transient term be 
discretized, therefore the subscripts n and n+1 are added, where n refers to the value at the 
previous time step (known) and n+1 refers to the value at the present time step (unknown). 
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 1 2n 1 n
n 1 n 1 n 1 n n n

T T TT

Pr Pr 1 ˆDa p T
Ra Ra Pr Rat Pr Ra

−+
+ + +

−
+ − ∇ = − ∇ − ⋅∇

∆
u u u u u u + g  (2.10) 

This is rearranged to the following: 

 ( )1 2
n 1 n 1 n

TT

1 11 t Pr Da t Pr p
Pr Rat Pr Ra

−
++ ∆ − ∆ ∇ = − ∇ +

∆
u + f  (2.11) 

where the forcing term 1ˆT
Prn n n n

Tt Ra
= − ⋅∇ + +

∆
f u u ng u . 

 
Use the equality (1 1+ += + −n n n )np p p p  to calculate the incremental pressure at every time step.  
Equation (2.11) then becomes: 

 ( ) ( )11 2
1

1 1 Pr Pr
PrPr

n n n
n n

TT

p p p
t Da t

Rat Ra
θ +−

+

 ∇ + ∇ − + ∆ − ∆ ∇ = − +
∆

u f  (2.12) 

Split Equation (2.12) into a intermediate (viscous) step and a projection (inviscid) step, 
respectively: 
 

 ( )1 2
1

1 11 Pr Pr
PrPr

−
++ ∆ − ∆ ∇ = − ∇ +

∆
u% n

TT

t Da t p
Rat Ra

fn n  (2.13) 

 ( )( ) (1 2
1 1 1

1 11 Pr Pr
PrPr

−
+ + ++ ∆ − ∆ ∇ − = − ∇ −

∆
u u%n n n

TT

t Da t p p
Rat Ra

)n  (2.14) 

where u  is the solution to the intermediate step and does not satisfy continuity.  Now, take the 
divergence of the projection step, equation (2.14) 

1n+%

 

 ( )( ){ } ( )1 2 2
1 1 1

1 11 Pr Pr
PrPr

−
+ + +∇ ⋅ + ∆ − ∆ ∇ − = − ∇ −

∆
u u%n n n

TT

t Da t p p
Rat Ra n  (2.15) 

Note that at the end of the time step, the velocity must satisfy continuity, therefore the 
divergence of both u  and ∇  are 0 and the intermediate viscous term is ignored, resulting 
in 

1n+
2

1n+u

 ( ) ( )2
1 11 −

+ +∇ − = + ∆ ∇ ⋅
∆

u%T
n n n

Pr Ra
p p t Pr Da

t
1  (2.16) 

To find the divergence-free velocity at the end of the time step, solve for each component of 
velocity from equation (2.14), with the viscous term ignored. 
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( ) (1 1 11

1
1n n n

T

tu u p p
xt Pr Da Pr Ra+ + +− )n

∆ ∂
= − −

∂+ ∆
%  (2.17) 

 
( ) (1 1 11

1
1 Pr Prn n n

T

tv v p p
yt Da Ra+ + +− )n

∆ ∂
= − −

∂+ ∆
%  (2.18) 

For a pure liquid, the permeability term K and its dimensionless counter-part Da approach 
infinity, therefore  and Da  approach zero and are eliminated from the above equations.  In 
order to solve the above equations numerically, the finite element method is applied using the 
Galerkin formulation.  For details on how the Galerkin finite element method is formulated the 
reader should consult references [17,41]. 

1K− 1−

RESULTS FOR SIMULATIONS OF NATURAL CONVECTION OF A FREE FLUID 
AND OF A FLUID IN A PERMEABLE MEDIUM 

Figures 1 – 6 show steady-state results of the fractional step method applied to the simulation of 
Rayleigh-Bénard flow in a pure liquid and in a permeable medium.  Figures 1 – 5 are contour 
plots of the temperature with the velocity vectors superimposed.  Figure 6 is a contour plot of the 
pressure for the same case as Figure 5.  There are 41 nodes in each direction in all cases.  The 
results are presented in dimensionless form; the dimensionless temperature is 1.0 at the bottom 
and 0.0 at the top.  The gravity vector is oriented in the negative y-direction to create an unstable 
thermal condition.  The gravity vector has a magnitude of 9.81 m/s

2
 in all simulations.  Table I 

summarizes these results, listing the dimensionless parameters defined in equation (2.7).  Fluid 
properties are given, along with appropriate scaling parameters that correspond to the Rayleigh 
Numbers and Prandtl Numbers listed.  In two of the cases, fluid properties of air and water at 
300 K were used.  The reference variables relate to physical dimensions, boundary conditions, 
and fluid properties through equation (2.6). The results are in excellent agreement with results 
obtained for the same cases using the penalty function formulation. 

THE FRACTIONAL STEP METHOD APPLIED TO THE MOMENTUM EQUATION 
FOR DIRECTIONAL SOLIDIFICATION IN A BINARY ALLOY 

The above formulation demonstrates the process of applying the FSM to a single-constituent, 
single-phase fluid, with and without permeability.  Directional solidification of a binary alloy is 
much more complicated.  This process includes two constituents, two phases and an anisotropic 
permeability.  Developing the formulation here would require considerable space.  Therefore, 
only the results of the formulation are presented.  Please consult [11] for more details. 
 
The simulation of directional solidification in a binary alloy includes conservation of energy, 
species, mass, and momentum balance.  Since the FSM affects only the conservation of mass and 
momentum balance, only those equations are presented here.  Please consult [11,42,43] for more 
details regarding the equations for conservation of energy and species. 
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The dimensionless equation for momentum balance in a directionally solidifying binary alloy is 
[11]: 

 
( )

1 2

ST
L2 2

1 1p
t Re Re

RaRa ˆT S
t 3Re t Re Pr Re Sc

1

φ φ
φ

β φ β φ φ
φ

−∂
+ − ∇ = − ∇ − ⋅∇

∂

∂ ∂  − + ∇ + + − ∂ ∂  

u Da u u u u

u g
 (3.1) 

and the continuity equation is 

 .
t
φβ ∂

∇ ⋅ =
∂

u  (3.2) 

where β  is the shrinkage coefficient and is defined as ρ ρβ
ρ
−

= s l

l

. 

The momentum equation, equation (3.1) is split up into two steps in order to be solved using the 
FSM.  The dimensionless equation for the intermediate step is: 
 

 1 2
n 1 n 1 n n

1 t 11
t Re Re

φ φ−
+ +

∆ + − ∇ = ∆  
Da u u f% % p− ∇  (3.3) 

where the (explicit) forcing term   is defined as nf

 ( )ST n
n n n L2 2

Ra1 t Ra ˆT S 1
t 3Re t Re Pr Re Sc t

β φ β φ φ
φ φ

∆ ∂ ∂  = − ⋅∇ − + ∇ + + − + ∂ ∂  
uf u u g
∆

 (3.4) 

The dimensionless equation for the projection step is 
 

 ( ) ( ) (1 2
n 1 n 1 n 1 n 1 n 1 n

1 t 11 p
t Re Re

φ φ−
+ + + + +

∆ + − − ∇ − = − ∇ ∆  
Da u u u u% % )p−  (3.5) 

The implicit viscous term is ignored and continuity is imposed by taking the divergence of 
equation (3.5) 
 

 ( ) n 1
n 1 np p

t t t
β φ+

+
∇ ⋅

∇ ⋅ ∇ − = −  
∂

∆ ∆ ∂
u%

σ  (3.6) 

where the dimensionless term σ  is a function of the fraction liquid φ  and the anisotropic Darcy 
term and is a vector quantity, 
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 x

y

0
0

σ
σ

 

 

σ =   (3.7) 

where the individual components of σ  are as defined by Sabau, et al. [44]. 
 

 x y

x y

, andt1 1
Re Da Re Da

t
φ φσ σφ= = φ∆ ∆

+ +
 (3.8) 

 
The dimensionless scaling parameters are: 
 

 

4
T

T
T

3
S 0

S
S

T

S

VHThe Reynold 's Number : Re

gGHThe Thermal Rayleigh Number : Ra
D

gS HThe Solute Rayleigh Number : Ra
D

The Prandtl Number : Pr
D

The Schmidt Number : Sc
D

ν
β

ν

β
ν

ν

ν

=

=

=

=

=

 (3.9) 

RESULTS FOR SIMULATIONS OF CONVECTION IN A BINARY ALLOY 
UNDERGOING DIRECTIONAL SOLIDIFICATION 

Figure 7 shows the simulation domain, which is an 0.008 m by 0.03 m rectangle, for an alloy 
comprised of Pb-5.8% wt. Sb.  A mesh spacing of 0.0002 m is used, which is on the order of the 
primary dendrite arm spacing.  The initial condition consists of a fixed temperature at the bottom 
boundary (Y’ = 0) set to the alloy liquidus temperature and an imposed thermal gradient of  
12,000 K/m (positive with respect to Y’) throughout the liquid melt.  The liquid melt is of 
uniform composition = 5.8 wt% Sb.  The simulated boundary conditions are an imposed 
thermal gradient of 12,000 K/m at the top boundary, and 0.36 K/s cooling at the bottom (the 
temperature at the bottom boundary is changed in time).  A uniform body force of 9.81 m/s

0G  =

0S

2
 is 

imposed in the negative Y’-direction.  Figure 7(a) shows the three zones that are normally 
present during solidification: liquid, solid, and mush. 
 
Figures 8 – 11 show transient simulation results of the FSM applied to the momentum equation 
for natural convection in a binary alloy undergoing directional solidification.  In this case, the 
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boundary condition is continually changing and there is no steady state.   The simulated time is 
400 seconds in Figures 8 – 12. 
 
Figure 8 shows the temperature and pressure, clearly indicating the imposed temperature 
gradient and the resulting pressure gradient.  Figure 9 shows a plot of the fraction liquid and the 
concentration of the alloy throughout.  The three regions are labeled on the left hand side of 
Figure 9:  “Liquid, “Mush” or mushy zone, and “Solid”.  At this solidification time, the mushy 
zone is located approximately between Y = 0.007 and 0.010 meters.  The “freckles” on the 
concentration plot are clearly seen and are a result of thermosolutal convection.  The distortion 
of the fraction liquid from a purely vertical gradient is also obvious and is a direct result of the 
thermosolutal convection.  Figure 10 shows the same plot of fraction liquid and concentration as 
in Figure 9, with the velocity vectors super-imposed.  It is seen that the velocities emanate from 
the regions of highest deviation from the base concentration of S .  Figure 11 shows a close-up 
of the velocities and concentration occurring just above the mushy zone.  Finally, Figure 12 
shows the velocities and concentration occurring in the mushy zone.  The code is achieving 
acceptable continuity when simulating velocities even in the mushy zone, where the magnitude 
of the velocity is several orders of magnitude smaller than the velocities occurring in the all-
liquid region. These results also agree very well with those obtained using the penalty finite 
element formulation. 

0

CONCLUSION 

Natural convection is a phenomenon that occurs in free moving fluids, fluids contained in 
permeable media, and in alloys undergoing solidification.  Thermosolutal convection in castings 
that are being directionally solidified leads to concentration non-uniformities that result in 
scrapping the castings.  The FSM has been successfully applied to simulations involving a binary 
alloy undergoing directional solidification. It is expected that in simulations of directional 
solidification the FSM will allow us to greatly increase the size of the domains to be simulated.  
The results presented here are for two-dimensional domains only.  However, the results are 
highly encouraging and efforts are now underway to extend simulation of directional 
solidification with the fractional step method to three dimensions. 
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NOMENCLATURE 

Scalars 

β  shrinkage coefficient due to phase change from liquid to solid 

Tβ  coefficient of thermal expansion, 1/K 

Sβ  coefficient of solute expansion 

0ρ  reference density, kg/m
3
 

ρL  density of liquid, kg/m
3
 

Sρ  density of solid, kg/m
3
 

φ  fraction liquid 

µ  dynamic viscosity, N-s/m
2
 

ν  kinematic viscosity, m
2
/s 

ψ  pressure function, Pa 

DT  thermal diffusivity, m
2
/s 

DS solute diffusivity, m
2
/s 

g value of gravity vector, m/s
2
 

G reference thermal gradient, K/m 

H reference length, m 

p’ pressure, Pa 
*p′  modified pressure, Pa 

Pr Prandtl Number 

Re Reynolds Number 
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RaT thermal Rayleigh Number 

RaS solute Rayleigh Number 

Sc Schmidt Number 

0S  reference solute concentration, % 

t’ time, s 

∆ t time step size, s 

T’ temperature, K 

∆ T reference temperature difference, K 

u’ velocity in x direction, m/s 

v’ velocity in y direction, m/s 

V reference velocity, m/s 

 

Vectors and Tensors 

Da permeability, dimensionless 

K permeability , m
2
 

g gravity vector, m/s
2
 

n direction normal to boundary 

t’ direction tangent to boundary 

u’ velocity vector, m/s   
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Table I 
Scaling Parameters, Reference Variables, and Fluid Properties for Figures 1- 6 

 

Figure Ra Pr Da ∆T
a
 

(K) 
Fluid 

Properties 
H

a
 

(m) 
V

a
 

(m/s) 
1 10

5
 1.00 N/A 100 See Note b 1.0 0.32 

2 10
5
 7.00 N/A 100 See Note c 1.0 0.26 

3 10
6
 0.71 N/A 85 Air @ 300 K 0.05 0.38 

4 10
6
 1.0 10

-4
 100 See Note d 1.0 0.31 

5, 6 10
8
 5.83 10

-6
 20 Water @ 300 K 0.06 0.06 

 
a -  Reference Variables given in equation (2.6). 
b -  The thermal coefficient of expansion is assumed to be –0.0001  K

-1
, the kinematic viscosity 

is assumed to be 10
-3

 m
2
/s, and the thermal diffusivity is assumed to be 10

-3
 m

2
/s. 

c -  The thermal coefficient of expansion is assumed to be –0.0001 K
-1

, the kinematic viscosity is 
assumed to be 7 X 10

-4
 m

2
/s, and the thermal diffusivity is assumed to be 10

-4
 m

2
/s. 

d -  The thermal coefficient of expansion is assumed to be –0.001 K
-1

, the kinematic viscosity is 
assumed to be 10

-3
 m

2
/s, and the thermal diffusivity is assumed to be 10

-3
 m

2
/s . 
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XXFigure 1: Natural Convection in a fluid, Ra = 10
5
, Pr = 1. 
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XFigure 2: Natural Convection in a fluid, Ra = 10
5
, Pr = 7. 
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XFigure 3: Natural Convection in Air, Ra = 10
6
, Pr = 0.71. 
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Dimensions (m) and mesh spacing of the domain used in the simulations reported here. 

 
 
 
 

X

Y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

-5.00
-8.57
-12.14
-15.71
-19.29
-22.86
-26.43
-30.00
-33.57
-37.14
-40.71
-44.29
-47.86
-51.43
-55.00

Pressure

X

Y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

782.0
757.8
733.6
709.5
685.3
661.1
636.9
612.7
588.5
564.4
540.2
516.0
491.8
467.6
443.5

Temperature

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0 0.004 0.0080 0.004 0.008Figure 8.  Temperature (K) and Pressure (Pa) Results for Pb-5.8 wt. % Sb. 
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0 0.005 0.01Figure 11.  Concentration and Velocity Results near Mushy Zone, for Pb-5.8 wt. % Sb. 
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0.002 0.004 0.006Figure 12.  Concentration and Velocity Results inside Mushy Zone, for Pb-5.8 wt. % Sb. 
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