

1

Advanced Product Development Team Team X

Robert N. Miyake Jet Propulsion Laboratory 13 August, 2002

Thermal and Fluids Analysis Workshop 12-16 August, 2002 Houston, Texas

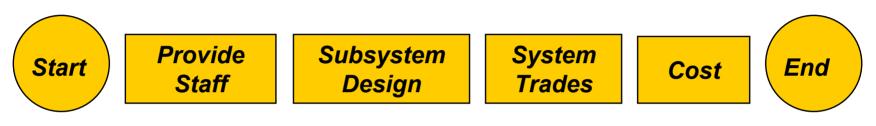
Advanced Product Development Team Team X

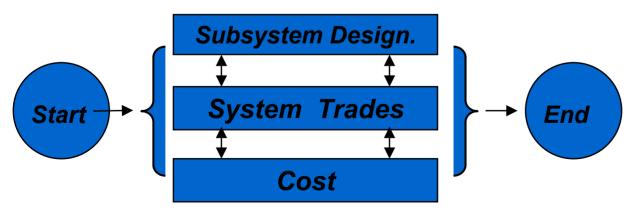
Agenda
Team X Charter
Concurrent Design Process
Cost/Schedule Metrics
Design Team Tools
Distributed Concurrent Engineering (DCE) Process/Tools
Subsystem Design Tools
Cost Validation
Advantages of Team X Process

Team-X Charter

The Advanced Projects Design Team ("Team X") was started in April of 1995. The team was chartered to:

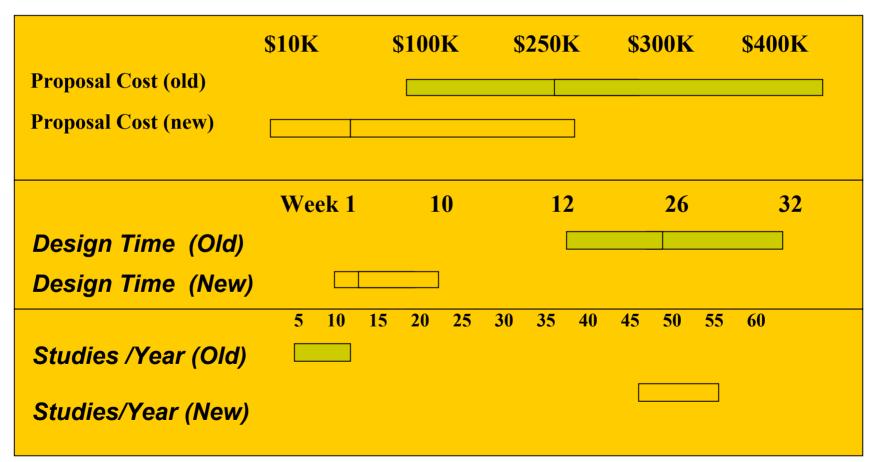
- Improve the speed and quality of JPL's new mission concepts.
- Create a reusable study process with dedicated facilities, equipment, procedures, and tools.
- Develop a database of initial mission requirements that can be easily updated and electronically transferred for use in subsequent project phases.
- Develop mission generalists from a pool of experienced engineers.

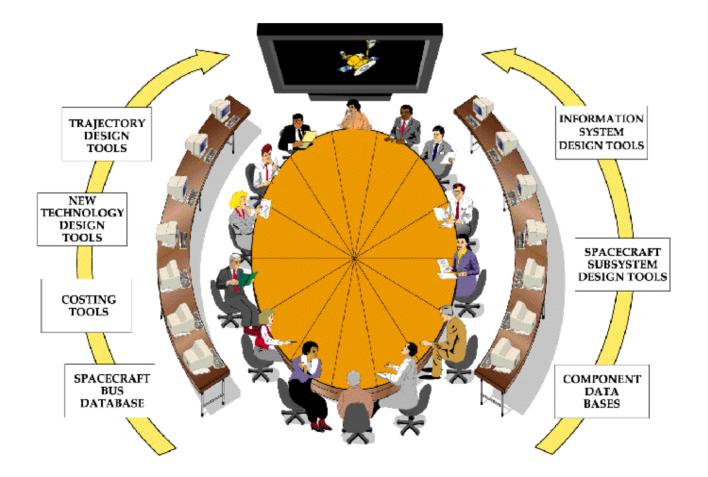

Over 450 completed studies to date



Concurrent Design Process

Old Process – Sequential


New Process – Concurrent


Cost/Schedule Metrics

Design Team Tools

The DCE Process

- Meet with the customer, define the study and mission objectives.
- Meet with team leaders to determine roles and responsibilities.
- Meet with the customer and a subset of the team to develop requirements and identify pre-session analyses.
- Provide top level requirements and results from pre-session analyses to the combined DCE team.

DCE Tools

- Each team uses existing internal tools and processes with minimum modification.
- For external communication we use existing COTS tools:
 - Video teleconferencing utilizing ISDN lines.
 - Meet-me phone lines.
 - NetMeeting and/or Timbuktu application sharing software for visual data sharing.
 - VPN and/or Timbuktu to dynamically share local files.

Subsystem Design Tools

Design tool used for the Team X studies is an Excel coupled tool.

The Excel tool for all subsystems, as well as programmatics, and systems rollup are interlinked such that an on-put from any subsystem will be routed to all subsystems to which this data is necessary to complete its function.

The reporting tool is Word, and has a notes section as well as a reporting section.

JEAM X

CEM Tool

		CBE +									
		Mass		Contingency			Power[W]			NAS A	
	Unit	[kg]	%	[kg]	Science	Telecom	TCM	Cruis e	Launch	TRL	Comments
TOTAL		7.51	27%	9.51	10.1	10.1	10.1	10.1	10.1	6	
The rmal (Space craft only)		7.44		7.44	10.1	10.1	10.1	10.1	10.1		Assumes
ine imar (Space clantoniy)		/.++		/.++	10.1	10.1	10.1	10.1	10.1		Assumes
The rmal Subsystem Type (Passive / Active)											
Sum of Elements to Check		7.51	27%	9.51							
Multila ye r Ins ula tio n		4.52	30%	5.88							
No. of Layers (Type 1 or 2)											Type 1
The rmalSurfaces		0.16	30%	0.20							
Films											
P a ints											
Tapes		0.00	2004	0.01							
The rmal Conduction Control Fiberglas		0.20	30%	0.26							
Diamond											
Louvers Total Mass	0.0	0.00		0.00							
Va ira b le Emissivity Surfa ce $(/m2)$	0.0	0.00		0.00							
Гhermal Radiator (Unit Area) Гhermostats (Number)	0.0 10.0	0.00 0.50	30%	0.00							
Heaters (Number)	5.0	0.30	30%	0.03							
HeatPipes (per 30 cm)	1.0	0.23	30%	0.23							
Passive / Variable Cond.	0.0	0.00	5070	0.00							
Sensors	0.0										
T e mp e ra ture	30.0	0.30	10%	0.33							
Others											
Sun Shade Aero-Shield											
Special Element											
specialElement											
RHU's	0.0	0.00		0.00							Assumes
Propulsion System (Inc. The rmo		0.00		0.00							
Fank Heaters	4.0	0.40	20%	0.48							
Line Heaters	10.0	1.00	15%	1.15							
Instrument The rmal Mass/Power											
Estimated Subsystem Cost (\$M FY97	2.64				Phase A	Phase B	Phase C	Phase D			
	Earth			Workforce	0.07	0.50	0.524				
Non Rec	0.91			De v/Te s t		0.1	0.3				10
Red	1.731			FltHW				0.301			10
				TestHW				0.25			

Thermal Hardware List + Power

Mission:Study NameElement:OrbiterThermal SystemStandard Report Equipment List

ROWS, COLUMNS, AND CELLS MAY BE DELETED FOR PRINT OUT FORMATING PURPOSES WITH USERS CAN ADJUST ROW AND COLUMN WIDTHS TO THEIR OWN PREFERENCES.

Subsystem Totals	1		7.510	20.2	10.1
	1	-		1	
Component	Flt Unit s	Mass/ Unit (kg)	Total Mass (kg)	Peak Power per Unit (W)	Average Power per Unit (W)
Multilayer Insulation			4.520		
Thermal Surfaces			0.160		
Thermal Conduction Control			0.200		
Louvers Total Mass	0	0.975	0.000		
Thermal Radiator (Unit Area)	0	27.000	0.000		
Heaters/Thermostats			2.150	20.2	10.1
Heat Pipes (per 30 cm)	1	0.180	0.180		
Passive Variable Cond.			0.000		
Temp Sensors			0.300		
RHU's			0.000		

11

System Summary

						<u>S tu</u>	dy Nan	<u>ne</u>			Legend	l		
S YS TEA	MS WOR	KSHEE	T			<u>(</u>) rb ite r					Inputs fr	om Subsyster	ns
alyst:	Matt Joh	nson										Inputs fr	om Systems	
art Date :	2/14/1997	Dire c to ry	C:\Docu	ments an	d Settings	\rmiya ke \l	My Docume	ents\				Inputs fr	om SOS	
												Ca lcula	te d	
Stabilizati	on - cruise	3-Axis		P	ointing I	Dire c tio n	- cruise	TBD						
tabilization	n - science	3-Axis		Ро	inting Di	rection -	science	TBD		Mission	Duration	TBD	ye ars	
									Max pro	be sun	distance	TBD	AU	
Pointing	g Control	3600	arcsec	R	a dia tio n	Total Do	se, krad	TBD	lnstr	ume nt D	ata Rate	TBD	kb/s	
nting Kn	owledge	1800	arcsec			Scier	nce BER	1.00E-06		Data	Storage	TBD	Mb	
Pointing	g Stability	60	arcsec	/sec		Redu	undancy	TBD						
De te rm	nined by:	TBD							Maximu	ım Link l	Distance	TBD	AU	
					Τe	chnolog	gy Cutoff	TBD]	Return D	ata Rate	TBD	kb/s	
	1				Subsys	CBE+	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	NAS A	S ub s y s te m	Last
Upda	te Now			<u>Ma s s</u>	Cont.	Cont.	Power	Power	Power	Power	Power	TRL	<u>Cost</u>	Update d
Undate I	Database			<u>(kg)</u>	%	<u>(kg)</u>	<u>(W)</u>	<u>(W)</u>	<u>(W)</u>	<u>(W)</u>	<u>(W)</u>		<u>M\$</u>	
			Mass Fraction									To-		
Save Up			Flaction				Science	Telecom	TCM	Cruis e	La unc h	day		
Payload														
instrume			0.0%	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0	\$0.0	11/4/1997 8
•	oad Tota	1	0.0%	0.0	0%	0.0	0.0	0.0	0.0	0.0	0.0			
Bus	~ .													
Attitude (0.0%	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0	\$0.0	11/18/1997 16
	nd & Data		0.0%	0.0		0.0	0.0	0.0	0.0	0.0	0.0	6	\$3.5	1/11/2002 13
Power			60.1%	328.7	15%	378.9	4.2	4.2	6.3	11.2	6.3	6	\$5.1	3/6/1998 9
Propulsio			5.2%	28.7	0%	28.7	1.3	1.3	17.3	54.7	17.3	4	\$12.4	11/5/1997 8
Propulsio			0.0%	0.0	0%	0.0	0.0	0.0	0.0	0.0	0.0	0		11/5/1997 8
Structure			28.9%	157.9	30%	205.2	0.0	0.0	0.0	0.0	0.0	6	\$15.9	6/14/1994 15
	dapter		1.6%	8.7	30%	11.3								
Cabling			2.5%	13.7	30%	17.8								6/14/1994 15
Felecom			0.0%	0.0	0%	0.0	0.0	0.0	0.0	0.0	0.0	0	\$2.1	3/6/1998 12
Thermal			1.7%	9.5	27%	12.1	31.1	31.1	31.1	31.1	31.1	6	\$1.3	3/4/1998 15
Bus	Total			547.1	20%	654.0	36.7	36.7	54.8	97.0	54.8		\$40.1	
	6 T ()			5 4 7 1	2007	(54.0	267	267	54.0	07.0	54.9		\$1.3	Sys Mgmt&Eng.
•	raft Total	• • /		547.1	20%	654.0	36.7	36.7	54.8	97.0	54.8		\$1.9	Me chBuild Up
-	m Herita	-	igency	106.9 57.2	20% 10%		11.0	11.0	16.4	29.1	16.4		\$43.4 \$43.4	Bus Cost
System Contingency			10%		47.7	47.7	71.2	126.1	71.2		• • •	Bus+InstCost		
Space craft with Contingency		711.3			47.7	47.7 500	71.2	126.1 De lta-V1	71.2 2000	m /a	\$4.7	ATLO Cost		
Propellant & Pressurant 30.3%		308.7 0.0			For S/C mass =	500 0		De Ita-VI De Ita-V2		m/s m/s	\$48.1	11/5/1997 8		
Propellant & Pressurant. 0.0% Space craft Total (Wet)				1	For S/C mass =					111/5	\$40.1	ElementCost		
spacec	rant rotar	(wet)		1020.0						Mass	gencies Power			1/1/10/200
	dantar			26.2				Inc	truments		30%			1/1/1900 21
L/V Adapter Launch Mass			1046.2				IIIS	other		30% N/A				
		1040.2					Outer	IN/A	IN/A					

Cost Validation

Validation the cost of the studies conducted by Team X as compared by actual costs.

There have been about 10 studies used in a validation evaluation. The Term V cost evaluation $\frac{1}{2}$ (200/

The Team X cost variation used is +/-30%.

Of the 10 studies used in the validation evaluation

5 were within +/- 10% 2 were within +/- 20% 2 were within +/- 30 % Only 1 was out side the +/- 30 %, and was +34 %

Advantages of Team-X Process

- Enables real-time design and resolution of trade issues by all team members.
 - Allows team members to utilize tools while interacting with others
- Allows visibility across subsystem interfaces.
- Enables early agreement and ownership of decisions by all disciplines.
- Improve quality of JPL proposals and pre-projects
 - Facilitates assessment of cost, risk and performance
 - Facilitates assessment of tradeoff and descope options
- Improves phase-A design and saves money and schedule in the design process.