

TFAWS '02 Thermal Systems Session August 2002

#### Modeling of Multi-Layer Insulation Layups with Transmissive Outer Layers

Eugene K. Ungar Crew and Thermal Systems Division NASA/Johnson Space Center Houston, TX

# Content

- Problem Statement
- Optics Measurements
- Inference of Emissivity, Absorptivity, and Transmissivity
- Simplified and Detailed Modeling
- Analysis Results
- Recommendations

## **Problem Statement**

- Many of the insulation blankets on the International Space Station use an insulating layup consisting of
  - Chemglas 250 fabric outer layer
  - silver/Teflon film with Inconel backing
  - multiple layers of aluminized Mylar
- The silver/Teflon layer is designed to counteract the effect of the Chemglas transmissivity

## **Problem Statement**

- Original concern arose from discovery of some ISS blankets with the silver/Teflon reversed
  - effect of reversal on blanket performance
- Larger question is how we measure optics and model performance of blankets with transmissive outer layers
  - can standard measurement techniques give useful results?
  - is simple single surface modeling accurate?

#### Measurements

- Standard optics measuring tools sense hemispherical reflectance and read out emissivity and absorptivity
  - transmissive surfaces are problematic
- Measurements for present work performed using various layups of
  - Chemglas 250 fabric
  - Ortho Fabric
  - double-sided aluminized Mylar
  - reinforced aluminized Mylar
  - white cardboard

Emissivity measured using AZTek 2000 - performs total hemispherical reflectance measurements from less than 3 to greater than 35  $\mu$ m wavelength

Absorptivity measured using AZTek LPSR300 - makes measurements from 250-2800 nm, automatic integration of the reflectance data is performed to calculate and display solar absorption

| Raw Data from Test    |           |                |                           |                     |                      |                     |                      |
|-----------------------|-----------|----------------|---------------------------|---------------------|----------------------|---------------------|----------------------|
| layup                 | cardboard | Chemglas 250 ↑ | Chemglas 250 $\downarrow$ | Chemglas 250 ↑      | Chemglas 250↓        | Chemglas 250 ↑      | Chemglas 250 ↓       |
|                       |           | 0              | 0                         | cardboard           | cardboard            | Mylar ↑             | Mylar ↑              |
|                       |           |                |                           |                     |                      | cardboard           | cardboard            |
| measured absorptivity | 0.231     | 0.385, 0.378   | 0.348, 0.350              | 0.219, 0.220        | 0.220, 0.218         |                     |                      |
| measured emissivity   | 0.848     | 0.865          | 0.865                     | 0.865               | 0.86                 | 0.85                | 0.85                 |
| layup                 |           | Ortho Fabric ↑ | Ortho Fabric ↓            | Ortho Fabric ↑      | Ortho Fabric ↓       | Ortho Fabric ↑      | Ortho Fabric ↓       |
|                       |           |                |                           | cardboard           | cardboard            | Mylar ↑             | Mylar ↑              |
|                       |           |                |                           |                     |                      | cardboard           | cardboard            |
| measured absorptivity |           | 0.274          | 0.353                     | 0.187               | 0.249                |                     |                      |
| measured emissivity   |           | 0.84           | 0.84                      |                     |                      | 0.83                | 0.838                |
| layup                 |           | Mylar          | Mylar                     | scrim Mylar, scrim↓ | scrim Mylar, scrim ↑ | scrim Mylar, scrim↓ | scrim Mylar, scrim 1 |
|                       |           |                | cardboard                 |                     |                      | cardboard           | cardboard            |
| measured absorptivity |           | 0.164          | 0.091                     | 0.083               | 0.262                | 0.078               | 0.264                |
| measured emissivity   |           | 0.03           | 0.03                      | 0.022               | 0.54                 | 0.03                | 0.52                 |

All emissivity measurements are the average of two or more measurements at different positions on sample

Two absorptivity measurements at different positions were averaged to yield values for Ortho Fabric – all others were single measurements

Where multiple absorptivity measurements are reported, they are the results of testing on different days

Emissivity measurements are reported to two significant figures by instrument

Absorptivity measurements are reported to three significant figures by instrument

Chemglas sample was marked to differentiate sides, side toward instrument is represented by  $\uparrow$  or  $\downarrow$ 

No visible difference between sides of Chemglas

Ortho Fabric sample  $\uparrow$  has outer layer towards instrument

Scrim Mylar sample ↑ has scrim towards instrument



 $\varepsilon_1$  and  $\varepsilon_2$  are the emissivities (or absorptivities) reported by the instrument Last equation can be solved for  $\tau$ 

First equation can then be solved for  $\boldsymbol{\epsilon}$ 



 $\epsilon_{f}$  and  $\epsilon_{b}$  are the emissivities of the front and back of the sample, respectively



 $\epsilon_3$  and  $\epsilon_4$  are the emissivities (and absorbtivities) reported by the instrument with front layer inverted

#### Calculated Diffuse Optical Properties

|                                   | 3           | $	au_{IR}$ | α         | $	au_{sol}$ |  |
|-----------------------------------|-------------|------------|-----------|-------------|--|
| Chemglas ↑ 0.865                  |             | opaque     | 0.05      | 0.04        |  |
| Chemglas $\downarrow$             | 0.865       | opaque     | 0.06      | 0.31        |  |
| Ortho Fabric<br>(outside)         | 0.84        |            | 0.05      | 0.04        |  |
| Ortho Fabric<br>(inside)          | 0.84        | opaque     | 0.09      | 0.24        |  |
| double-sided<br>Mylar             | 0.03        | opaque     | near zero | 0.19        |  |
| scrim Mylar<br>(shiny side) 0.022 |             |            | 0.083     |             |  |
| scrim Mylar<br>(scrim side)       | 0.54 opaque |            | 0.262     | opaque      |  |

Opaque surfaces are identified by negligible difference between measurements with and without backing

# Simplified and Detailed Modeling

- Simplified modeling
  - measure layup emissivity and absorptivity using instruments
  - model MLI outer layers as single surface
- Detailed modeling
  - determine emissivity, transmissivity in solar and IR ranges for relevant layers
  - calculate performance based on multiplesurface model

#### Simplified Modeling

- Emissivity and absorptivity that would be measured for layups can be calculated based on known parameters for each layer,  $\epsilon$ ,  $\alpha$ ,  $\tau_{IR}$ ,  $\tau_{sol}$ 
  - different optics on each side of top layer

$$\boldsymbol{\epsilon}_{\text{meas}} = (\tau + \boldsymbol{\epsilon}_{\text{f}}) - \tau^2 \sum_{n=1}^{\infty} (1 - \boldsymbol{\epsilon}_{\text{o}})^n [1 - (\tau + \boldsymbol{\epsilon}_{\text{b}})]^{n-1}$$

- same optics on each side of top layer

$$\varepsilon_{\text{meas}} = (\tau + \varepsilon) - \tau^2 \sum_{n=1}^{\infty} (1 - \varepsilon_o)^n [1 - (\tau + \varepsilon)]^{n-1}$$

#### Simplified Modeling – Chemglas-silver/Teflon

| correct1stChemglas0.865*layuplayer2500.75*2ndsilver/0.75*    | opaque* | 0.865 | 0.055*            | 0.31*  |      |
|--------------------------------------------------------------|---------|-------|-------------------|--------|------|
| 2 <sup>nd</sup> silver/ 0.75 <sup>t</sup>                    |         |       |                   | 0.51   | 0.16 |
| layer Teflon 0.75                                            |         |       | 0.09†             | opaque |      |
| incorrect 1 <sup>st</sup> Chemglas<br>layup layer 250 0.865* | opaque* | 0.865 | 0.055*            | 0.31*  | 0.32 |
| 2 <sup>nd</sup><br>layer Inconel 0.04 <sup>‡</sup>           |         |       | 0.65 <sup>‡</sup> | opaque |      |

\* Present work

† Sheldahl Product Bulliten - 0.005 thick silver/Teflon, from Sheldahl Technical Materials, 1150 Sheldahl Rd., Northfield, MN

‡ The Red Book (RB1), from Sheldahl Technical Materials, 1150 Sheldahl Rd., Northfield, MN

## Analysis Case – Simplified Model

- Cube with 1 sun (435 BTU/hr ft<sup>2</sup>) on one side (background absolute zero) and 0°F blackbody on other 5 sides
- Cube internals will reach average sink temperature
- Correct layup, ε=0.865, α=0.16
  -T<sub>∞</sub>=1°F
- Incorrect layup, ε=0.865, α=0.32
  -T<sub>m</sub>=20°F

# **Detailed Modeling**

- Model internal MLI (cube with  $\epsilon^*=0.05$ ) and both sides of outer and inner layers
- Calculate solar energy absorbed on outer layer and inner layer
- Use radiation resistance modeling to calculate resulting internal temperature



Subscripts s and d refer to specular and diffuse values, respectively

For zero angle of incidence  $\tau_s=1.5\tau_d$  based on distance traveled through material



All view factors are unity  $A_{1a}$ ,  $A_4$ ,  $A_5 = 1$  ft<sup>2</sup> for convenience  $A_{1b}$ ,  $A_2$ ,  $A_3 = 5$  ft<sup>2</sup>  $T_6=0^{\circ}F$  $T_7=0^{\circ}R$ 

## Analysis Case Results – Detailed Model - Chemglas-silver/Teflon

| Chemglas<br>absorbed<br>solar | inner layer<br>absorbed<br>solar                                                                  | internal<br>temperature                                                                                                |
|-------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 49.7                          | 44.7                                                                                              | <b>23</b> 0⊏                                                                                                           |
| BTU/hr ft <sup>2</sup>        | BTU/hr ft <sup>2</sup>                                                                            | 23 F                                                                                                                   |
| 30.0                          | 175.3                                                                                             | 00.4°F                                                                                                                 |
| BTU/hr ft <sup>2</sup>        | BTU/hr ft <sup>2</sup>                                                                            | 294°F                                                                                                                  |
|                               | Chemglas<br>absorbed<br>solar<br>49.7<br>BTU/hr ft <sup>2</sup><br>30.0<br>BTU/hr ft <sup>2</sup> | Chemglas<br>absorbed<br>solarinner layer<br>absorbed<br>solar49.744.7BTU/hr ft²BTU/hr ft²30.0175.3BTU/hr ft²BTU/hr ft² |

#### Model Comparison Chemglas-silver/Teflon

|                    | internal<br>temperature | internal<br>temperature |
|--------------------|-------------------------|-------------------------|
|                    | (simplified model)      | (detailed<br>model)     |
| correct<br>layup   | 1°F                     | 23°F                    |
| incorrect<br>layup | 20°F                    | 294°F                   |

• Detailed model is required to capture physics

### Recommendations

- MLI with transmissive outer layers must be modeled in detail to capture effect of reversed inner layers
- Significantly different results are obtained using detailed modeling for even correctly built blankets