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1. INTRODUCTION 

 
Over the last decade significant new technologies have been developed which allow the 

scientist/engineer to design reliable programs for simulating the complex physics involved in 
turbulent flow combustion devices. In the area of numerical algorithm development, a significant 
step forward has come with the maturation of unstructured grid methods, which provide a host of 
benefits over traditional methods employing structured multi-block grids with a curvilinear 
coordinate framework. Some of these benefits, which have been extensively discussed in the 
literature, include the ease of mesh generation, mesh refinement and mesh movement for problems 
with moving domain boundaries. One of the most practical benefits, though, is the ease with which 
numerical algorithms can be developed for the automatic mapping of unstructured grids to parallel, 
distributed-memory computer architectures, which are evolving as the architectures of choice for 
computer codes which are being employed to solve problems of ever-increasing complexity, 
involving multi-disciplinary physics and ever-increasing grid size. There are, however, some 
disadvantages associated with unstructured grid methods, primarily in the form of increased data 
file size and program memory compared to structured grid counterparts, as well as the extra 
challenge required to obtain optimum performance of unstructured codes on cache-based memory 
architectures. However, with advances in computer hardware, these do not appear to be stumbling 
blocks. 

 
In addition to numerical algorithm development, great strides have been made in the area of 

program development tools. The most notable of these advances has been the proliferation of 
object-oriented programming methods, of which, C++ seems to be gaining popular favor in the 
scientific and engineering communities. Sometimes overlooked in importance relative to both 
physical and numerical modeling as only a means to an end, the use of object-oriented methods for 
program design can significantly enhance the overall process by allowing developers to concentrate 
more on physical models and advanced numerical techniques rather than the actual mechanics of 
writing and maintaining code. Some adjustment is required, however, when moving from 
traditional procedural-based languages such as FORTRAN90 to object-oriented languages. Object- 
oriented languages, C++ in particular, provide a much wider programming vocabulary, allowing 
developers to write code which expresses the overall design in a more conceptual way than can be 
obtained with procedural languages. This vocabulary, however, can easily be misused with 
disastrous results, if care is not taken, resulting in codes which run significantly slower than their 
FORTRAN90 counterparts. With proper use, though, this does not have to be the case. 
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Recently, a new framework for application development called LOCI (Ref. [5]) has been 

developed at the Mississippi State University. LOCI is designed to reduce the complexity of 
assembling large-scale finite-volume applications as well as the integration of multiple applications 
in a multidisciplinary environment. LOCI utilizes a rule-based framework for application design, 
and is an interesting alternative to the use of object-oriented design in C++. Users of LOCI write 
applications using a collection of “rules” and provide an implementation for each of the rules in the 
form of a C++ class. In addition, the user must create a database of “facts” which describe the 
particular knowns of the problem, such as boundary conditions. Once the rules and facts are 
provided, a query is made to have the system construct a solution. One of the interesting features of 
LOCI is its ability to automatically determine the scheduling of events of the program to produce 
the answer to the desired query, as well as to test the consistency of the input to determine whether 
a solution is possible given the specified information. The other major advantage of LOCI to the 
application developer is its automatic handling of domain decomposition and distribution of the 
problem to multiple processors. This feature alone makes LOCI a very attractive alternative as it 
allows scientists/engineers who have neither the time, the training, nor the inclination to understand 
the intricacies of message passing (e.g. MPI) to write code for distributed memory platforms. 

 
The algorithms for the solution of Reynolds-averaged Navier-Stokes (RANS) equations can be 

broadly classified as: (a) pressure-based and (b) density-based methods. Examples of the former are 
the structured grid-based STREAM [Ref. 1] code and the unstructured grid-based STREAM-UNS 
code [Ref. 2,3]. An example of a density-based code is the CHEM [Ref. 4] code which uses the 
LOCI framework. Both density-based and pressure-based methods have their advantages and 
disadvantages which have been well documented in the literature. Density-based methods are 
typically most efficient and robust at the higher-end of the Mach number spectrum and the 
pressure-based methods at the lower-end of the spectrum. Used in conjunction, they can 
compliment each other to yield an optimum performance for all-speed flows which are the norm in 
propulsion devices. Thus, it is desirable to develop a computational tool that utilizes both these 
methods in a single framework. The framework chosen for this is LOCI.  

 
In this paper, we will discuss various issues involved in implementing the technology from a 

currently existing FORTRAN90 code called STREAM into a new code called STREAM-UNS-
LOCI programmed in the LOCI framework.  STREAM is a pressure-based, multi-block, Reynolds-
averaged Navier-Stokes (RANS) code, which has been extensively developed and tested over the 
last decade. The code is designed to handle all-speed flows (incompressible to supersonic) and is 
particularly suitable for solving multi-species flow in fixed-frame combustion devices, as well as 
turbomachines with multiple stationary and rotating components. In the following sections, we first 
present the salient features of STREAM and then discuss some of the advantages/disadvantages 
that are to be gained in moving to the unstructured grid environment. Finally, we discuss the rule-
based LOCI system and compare/contrast this approach with that of traditional object-oriented 
design. 
 
2. PRESSURE-BASED METHODOLOGY: STREAM 

 
STREAM is a pressure-based flow solver (Ref. [1]) which employs structured body-fitted grids 

for computing steady compressible and incompressible, laminar and turbulent flows. For handling 
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complex geometries, multiblock abutting grids with flux conservation at the block interfaces, are 
employed. Various convection schemes including first-order upwind, second-order upwind, central 
difference and QUICK are available in STREAM. 

 
The flow solver is based on the SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations) algorithm (Ref. [7]). It uses a control volume approach with a collocated arrangement 
for the velocity components and the scalar variables like pressure. Pressure-velocity decoupling is 
prevented by employing the momentum interpolation approach (Ref. [8]); this involves adding a 
fourth-order pressure dissipation term while estimating the mass flux at the control volume 
interfaces. The velocity components are computed from the respective momentum equations. The 
velocity and the pressure fields are corrected using a pressure correction ( p′ ) equation. The 
correction procedure leads to a continuity-satisfying velocity field. The whole process is repeated 
until the desired convergence is reached. The details of the implementation of STREAM can be 
found in Ref. [1]. 

2.1. Governing Equations 
 
The governing equations that are used are the equations of mass continuity, momentum, energy 

and species transport: 
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where ρ is density, iu  is velocity vector, p is pressure, iY  is the mass fraction of species i (out of a 
total of NS species), ijτ  is viscous stress tensor, jq  is heat flux vector;  H is the total (or stagnation) 
enthalpy given by 

 1
2 i iH h u u= +  (5) 

with h being the specific enthalpy which is related to the temperature (T) as 
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where piC  is the specific-heat (for constant pressure processes) for the ith species. An equation of 
state is required to relate the density to the thermodynamic variables; for an ideal gas, we use the 
following: 
 p RTρ=  (7) 
where R is the gas constant. 

The constitutive relation between stress and strain rate for a Newtonian fluid is used to relate 
the components of the stress tensor to velocity gradients: 
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where µ  is the molecular viscosity and tµ  is the turbulent (eddy) viscosity to be defined later. The 
heat flux vector is obtained from Fourier’s law: 

 
Pr

t
j

t j

Tq
x

µ
κ
  ∂

= − +  ∂ 
 (9) 

where ijδ  is the Kronecker delta and κ  is the thermal conductivity; LPr  is the laminar Prandtl 
number defined as: 
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L

C µ
κ

=  (10) 

For turbulence closure, the model employed is the k-ε model. The eddy viscosity is estimated 
from the turbulent kinetic energy (k) and the rate of dissipation of turbulent kinetic energy (ε) by 
the following relationship: 
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The k and ε are estimated by their own transport equations which can be written, in Cartesian 
coordinates, as the following: 

 ( ) ( ) t
i k

i i k i

kk u k P
t x x x

µ
ρ ρ µ ρε

σ
  ∂ ∂ ∂ ∂

+ = + + −  ∂ ∂ ∂ ∂   
 (12) 

 ( ) ( )
2

1 2
t

i k
i i i

u C P C
t x x x k kε

µ ε ε ερε ρ ε µ ρ
σ

  ∂ ∂ ∂ ∂
+ = + + −  ∂ ∂ ∂ ∂   

 (13) 

where kP  is the production of k from the mean flow shear stresses and is given by 

 ji i i
k ij t

j j i j

uu u uP
x x x x

τ µ
 ∂∂ ∂ ∂

= = + ⋅  ∂ ∂ ∂ ∂ 
 (14) 

The term ω�  represents the chemical heat release source terms which are obtained from the laws 
of mass action. A set of chemical reactions can be expressed as follows for the ith species of the jth 
reaction, in terms of the stoichiometric coefficients ( ijν ′  and ijν ′′  for the reactants and products, 
respectively): 

 
1 1

, 1,...,
f j

b j

NS NSK

ij i ij iK
i i

M M j NRν ν
= =

→′ ′′ =←∑ ∑  (15) 

The net rate of change of the molar concentration, ijX , of species i due to reactions j is given by 
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and the net species production rate, iω� , is obtained by summing over all reactions: 
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The forward rate of reaction is given by the modified Arrhenius law: 
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and the corresponding backward reaction can be obtained from  
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where 
jeqK  is the equilibrium coefficient given by 
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where iG  is the Gibb’s free energy and 
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In the above equations, jA , jB  and jE  are constants. 
 
 

2.1. Transformation to Curvilinear Coordinates 
 

For arbitrary shaped geometries, the governing equations are transformed into generalized 
curvilinear coordinates (ξ, η, ζ), where ξ=ξ(x,y,z), η=η(x,y,z) and ζ=ζ(x,y,z).  The transformation 
of the physical domain (x,y,z) to the computational domain (ξ,η,ζ) is achieved by the following 
relations: 
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where the metrics are 
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and J is the Jacobian determinant of the transformation given by 
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Figure 1. 2-D structured grid (a) Physical plane. (b) Transformed (computational) plane. 

2.3. SIMPLE Algorithm for Pressure-Velocity Coupling 
 
Following the standard procedure employed in the SIMPLE algorithm (Ref. [7]), suppose that 

the velocity field at an intermediate step of the iterative solution procedure is given by u*, v* and 
w*, corresponding to a pressure field p*. The new predicted velocity and pressure fields can then 
be obtained by adding a correction as follows: 
 * * * *, , ,p p p u u u v v v w w w′ ′ ′ ′= + = + = + = +  (25) 

To obtain the pressure and velocity corrections, first the u-momentum equation for this 
intermediate velocity field is written as  
 * * *u
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 ( )* * * *
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From this, an expression for the correction of the u-component of velocity can be obtained: 
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Similarly, v′  and w′  can be written as functions of p′ . Finally, plugging the predicted velocity field 
( *u u u′= + , etc.) into the continuity equation yields an equation for p′ : 
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where the superscript n represents solution at the old time level. 

2.4. PISO-Based Predictor-Corrector Algorithm for Unsteady Flows 
The steady-state SIMPLE algorithm can be extended in a straightforward manner for unsteady 

flows by including the unsteady terms in the Navier-Stokes equations. However, this approach is 
computationally expensive since several iterations have to be conducted at each timestep. A more 
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efficient procedure has been developed in Ref. [9] which is based on the PISO algorithm of Ref. 
[10]. The unsteady algorithm can be summarized as follows: 
• Start with the previous timestep values: , , , ,n n n n nu v p Tρ  
• Predictor: solve the momentum equations implicitly treating the pressure gradient from the 

previous timestep explicitly to get *u and *v  
• First corrector: 

▪ Compute control volume interface velocities 
▪ Compute p′  and update velocities using p′  to get **u and **v  
▪ Update pressure using p′ and density from equation of state to yield *p  and *ρ   

• Second corrector 
▪ Compute p′′  
▪ Update velocities using p′′ to get ***u and ***v   
▪ Update pressure and density to obtain **p  and **ρ  from equation of state 

***u , ***v  , **p , **ρ  are considered the values at the new time level (n+1) and we proceed to the first 
step above for the next time level. 

 
An example of the application of STREAM for unsteady flow in a multi-stage turbomachine is 

shown in Fig. 2.  
 

 
(a) Transient pressure field in the first-stage impeller 

 

  
(b) Pressure fluctuation (with time) at the diffuser inlet (c) FFT of the pressure signal showing the harmonics 

 
Figure 2. Unsteady turbomachinery computation using STREAM. 
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3. FROM STRUCTURED (STREAM) TO UNSTRUCTURED (STREAM-UNS) 
 

In writing finite volume applications within the structured curvilinear-coordinate framework, a 
number of complexities appear which are simply a result of use of this framework. These issues can 
be categorized as follows: 

1) Curvilinear coordinate framework issues. 
2) Multi-block framework issues. 

In the early development of structured grid algorithms for grid generation and finite-volume 
Navier-Stokes solvers, curvilinear coordinates were adopted as a natural way to map physical space 
to computational space. While this mapping initially appears convenient, it introduces quite a lot of 
unnecessary difficulty into the process of finite-volume discrete integration. The primary source of 
excess complexity arises with terms in the governing equations which contain products of 
derivatives, such as the viscous dissipation term of the energy equation. This term can be naturally 
expanded in the form of Cartesian gradients. When using curvilinear coordinates each of the 
Cartesian gradients is expanded into gradients in computational space along with corresponding 
metrics. Such an expansion immediately triples the number of terms in the equation. In the process 
of unstructured grid assembly, curvilinear coordinates are completely abandoned and the Cartesian 
gradient components are evaluated directly with the aid of the relation derived from the divergence 
theorem 
 

Another major complexity introduced via curvilinear coordinates is the artificial separation of 
control volume faces into three distinct types. These are commonly labeled as North, South, East, 
West, Top and Bottom faces as shown in Fig. 1. The typical assembly for a scalar 
convection/diffusion/source equation involves an internal loop over the interior control volumes of 
a block to compute fluxes. Separate loops are then undertaken to handle boundaries. Since the 
boundaries fall along three different computational space coordinate surfaces, three distinct loops 
are required to complete the assembly process. In the process of unstructured grid finite volume 
integration, all modern solvers now use the process of either face-based or edge-based assembly. In 
this process, fluxes for each of the control volumes is assembled by a sweep over the faces (when 
variables are cell-centered) or edges (when variable are node- centered) of the grid. Taking the 
face-based process for example, the only distinction now made during flux assembly is between an 
interior face and a boundary face. Interior faces are those which contain elements on both sides and 
boundary faces those which are connected to a single element. This type of assembly process has 
been found to greatly reduce the amount of code required. In addition to theses complexities, the 
multi-block framework in itself leads to several algorithmic complications which disappear when 
employing unstructured grids. Since the complete domain is decomposed into a number of blocks, 
an entirely separate set of functions must be employed to communicate information between these 
blocks. For general block-to-block connectivities, these functions can become quite complex, 
especially if one-to-one connectivity (grid points match at the boundary between blocks) is not 
present. Since the unstructured grid contains no blocks, this additional complexity does not arise. 
 

The multi-block approach also creates complications regarding domain decomposition. Since 
multi-block codes are most naturally decomposed into functions which operate on individual 
blocks, the desire to maintain this structure often means that domain decomposition is performed at 
the block level as well. Such a choice often leads to load-balancing problems in the distributed 
memory environment, in which each processor is performing calculations on a single block of the 
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domain. To achieve equal load balancing, in which all processors have an equal amount of work, in 
some instances, structured multi-block codes require all blocks to have the same number of grid 
points, which while alleviating the load-balancing problem, can result in excessive grid generation 
time and an overall waste of grid points. With the unstructured grid approach, sophisticated 
automatic domain decomposition methods such as METIS [Ref. 11] have been developed which 
eliminate these problems and result in a good level of load balancing for general unstructured grids. 
 

While the benefits of migrating to unstructured grids are clear, the structured grid framework 
does provide one advantage. Overlooking the code complexity issue, once a structured code is 
written and well-tested, these codes tend to give generally higher performance than unstructured 
codes on cache-based memory architectures, since memory is accessed in a more uniform manner. 
This is entirely attributable to the ordered nature of the arrays used in structured codes. To use 
cache-base memory machines in an efficient manner, unstructured codes must employ 
node/edge/element reordering functions to ensure efficient memory access. Even with these 
considerations, structured grid codes are still superior in this regard. 

 
The underlying algorithm of STREAM-UNS is the same as that of STREAM, the primary 

difference being the use of face-based assembly which can accommodate arbitrary polygonal 
unstructured meshes. The generic convection-diffusion-source equation for any variable φ  (such as 
momentum, energy, species, etc.) is written in integral form for a control volume Ω  (e.g., the 
shaded region surrounding a control point P in Fig. 3) bounded by surface Γ  as: 

 

 ˆd F n d S d
t ϕρφ
Ω Γ Ω

∂
Ω + ⋅ Γ = Ω
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G
v  (30) 

 
STREAM-UNS is coded in C++ using object-oriented design. Figure 4 shows a steady state 
computation of incompressible flow over a swimmer delivery vehicle (SDV) using STREAM-
UNS. 
 
 

 
Figure 3. Control volume for integration on unstructured grid. 
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Figure 4. Submerged vehicle computation using STREAM-UNS. 

 
4. RULE-BASED FRAMEWORK: STREAM-UNS-LOCI 

 
In this section we provide a basic overview of the LOCI programming system (Ref. [5]) and 

describe how it can be used to implement unstructured grid solvers. For more complete details on 
the LOCI system, the reader should consult the LOCI tutorial (Ref. [6]) which is available with the 
LOCI distribution. Following this overview, we will discuss some of the anticipated benefits of 
using LOCI and outline the strategy for testing the feasibility of using LOCI for pressure-based 
unstructured grid assembly. 

4.1. LOCI: Overview 
 
Programs written using LOCI consist of the following three general components: 
 

1) Fact Database: This database which is maintained by LOCI contains all information which is 
known about the problem being solved. For finite-volume programs for fluid-flow and heat 
transfer, this information usually consists of items such as boundary conditions, initial conditions, 
material properties, and the combustion mechanism among other things. The fact database is 
usually constructed during the input section of the user's program. For example, the user may have 
a function called readBoundaryConditions() inside which the boundary conditions associated with 
the problem would be read and entered into the fact database. 
 
2) Rules: Rules can be thought of as the components of the finite-volume algorithm which are used 
to compute the desired solution from the known facts. Each rule can be represented in symbolic 
form by a “rule signature”. For example, a rule to compute the centroid of the triangles in a 2-D 
unstructured grid can be represented by the following rule signature: 
 

triangleCentroid<-triangleNodes->position 
 
This rule can be translated as “the centriod of each triangle is computed from the position property 
of the triangle's nodes”. The “<-” operator signifies the output of a rule, while the “->” operator 
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signifies that we are using the position property of the triangle nodes in the calculation process. 
This rule signature is really only a symbolic representation of what the rule is doing. For each rule 
signature, the programmer must supply a C++ class which actually implements the functions of the 
rule. An example of this will be given in a later section. 
 
3) Query: Once the facts and rules are specified, one obtains the solution by executing a “query” to 
the fact database for a desired solution. At this point LOCI attempts to order all the rules into an 
execution schedule which can produce the solution. If LOCI finds that it is not possible to arrive at 
a solution given the known facts and list of rules, it will inform the user. 

 
For completeness, a skeleton main function for a finite volume code is shown in Fig. 5. 
 
 
 
int main(int argc,char *argv[]){ 
 
  // Initialize the LOCI system. 
  Loci::Init(&argc,&argv) ; 
 
  // Setup the fact database and read known facts. Grid and boundary conditions 
  // are inserted into the fact database. 
  fact_db factDatabase ; 
  readGrid(factDatabase) ; readBoundaryConditions(factDatabase) ; ... 
 
  // Add all previously registered rules which define the finite-volume 
  // program to the rule database. Each rule is specified as a C++ class and 
  // registered in the global rule list in a separate implementation file. 
  rule_db ruleDatabase ; ruleDatabase.add_rules(global_rule_list) ; 
 
  // Distribute the rules and facts to the various processors. 
  int numProcesses=Loci::MPI_processes,myID=Loci::MPI_rank ; 
  std::vector<entitySet> partition=Loci::generate_distribution 
    (factDatabase,ruleDatabase) ; 
  Loci::distribute_facts(partition,factDatabase,ruleDatabase) ; 
 
  // Specify the 'query' and set up an execution schedule to satisfy it. Here 
  // we are asking for the solution, which also happens to be a rule. 
  string query("solution") ; 
  executeP schedule=create_execution_shedule(ruleDatabase,factDatabase,query) ; 
 
  // Execute the schedule to produce the solution. 
  schedule->execute(factDatabase) ; 
 
  // Finalize the LOCI system. 
  Loci::Finalize() ; 
} 

Figure 5. LOCI: Example 1. 

4.2. Basic Data Structures of LOCI 
 

In order to provide some foundation for understanding the implementation files for the rules 
which compose any finite-volume program constructed using the LOCI system, we present some of 
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the basic data structures used in LOCI. Only the data structures required for understanding the 
following material are provided. 
 
(a) Entity: 
This data type is used to identify objects in LOCI (e.g. triangles, edges, etc.). In LOCI, each entity 
is given an integer number for identification. For example, a list of triangle entities can be created 
by the following statement, where numTriangle has been previously defined (maybe by reading a 
grid file): 
 

Entity triangles(numTriangle) ; 
 
The triangle entities in this list are numbered sequentially from 0 to (numTriangle-1). 
 
(b) store: 
The data type is essentially an array which holds a number of values. Stores are usually associated 
with a collection of entities. The store then holds a single value for each entity. For example, we 
may have a store to hold the centroid value for a collection of triangles as follows: 
 

store<vector2d<double>> triangleCentroid ; 
 

(c) MapVec: 
This data structure is used to map one collection of entities to another. For example, to hold the 
triangle-to-node connectivity information in a 2-D finite-volume code we would have the 
following: 

MapVec<3> triangleNodes ; 
 

Thus, for each triangle, we hold the three global node numbers which define the triangle. 
 

4.3. Implementation of Rules in LOCI. 
 
In LOCI, each rule that composes the program is implemented in the form of a C++ class, 

which provides the functionality associated with the rule. A sample implementation for the triangle 
centroid rule discussed above is shown in Fig 6.  

 
Each rule class provides three basic functions: 

(1) A constructor, which essentially registers the data used and produced by the rule with LOCI 
(2) A calculation method which specifies the procedure for computing the output for a single entity. 
(3) A compute method which calls calculate() for a sequence of entities. This method is 
implemented in LOCI as a template function, which allows LOCI to avoid calling the virtual 
method calculate() at the loop level, which would significantly decrease the calculation efficiency.  
 

In addition to the rule implementation class, one also creates a global register_rule<> object 
which allows the rule to be registered with the global rule list which is maintained by LOCI. 
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class triangleCentroid : public pointwise_rule { 
  private: 
    const_store<vector2d<double> > position ; 
    const_MapVec<3> triangleNodes ; 
    store<vector2d<double> triangleCentroid ; 
  public: 
 
    // Constructor to provide symbolic names for the data used in 
    // this rule and to define the input and output quantities. 
    triangleCentroid() { 
      name_store("position",position) ; 
      name_store("triangleNodes",triangleNodes) ; 
      name_store("triangleCentroid",triangleCentroid) ; 
      input("triangleNodes->position") ; 
      output("triangleCentroid") ; 
    } 
 
    // Method which performs the calculation for a single Entity. 
    void calculate(Entity e) { 
      triangleCentroid[e]=(position[triangleNodes[e][0]]+ 
        position[triangleNodes[e][1]]+position[triangleNodes[e][2]])/3.0 ; 
    } 
 
    // Template function to call the calculate method for a sequence of 
    // entities. 
    virtual void compute(const sequence &sequence) { 
      do_loop(sequence,this) ; 
    } 
} ; 
 
// Create a global object that will register this rule in the global 
// rule list. 
register_rule<triangleCentroid> registerTriangleCentroid ; 
 

Figure 6. LOCI: Example 2. 

 

4.4. Benefits of Using the LOCI Framework 
 
In using any new system for writing finite-volume applications, the general hope is that one 

will spend less time on the actual mechanics of writing code, and thus more time concentrating on 
improving other aspects of the solver, such as the implementation of additional turbulence models 
or the integration with other solvers to handle multi-disciplinary physics. After all, scientists/ 
engineers are not in the business of writing code for fun ─ usually there is a physical problem that 
needs to be solved. In this regard, there are two major benefits which are envisioned in using LOCI, 
rather than other modern coding techniques such as standard object-oriented programming in C++. 

 
(a) LOCI is designed with multi-disciplinary problems in mind. 
(b) LOCI automatically handles the partitioning of the unstructured problem in the distributed-
memory environment. 
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(a) Seamless Integration of Multi-Disciplinary Physics 
 
With the rapid development of computer hardware, it is now feasible to solve quite complex 

problems involving multi-disciplinary physics. For example, one may solve a fluid flow/heat 
transfer problem in some combustion device, where one not only computes the fluid flow using a 
finite-volume solver, but also solves the heat-transfer and stress problem in the solid section of the 
device simultaneously. One approach commonly used these days is to solve each section (fluid or 
solid) independently and iterate several times until a converged solution is obtained in both regions. 
In this approach, the fluid and solid solution procedures are said to be loosely coupled, and in fact 
most often are obtained using different solvers which known nothing of the other. This approach 
works, but is usually a very slow process due to the loose nature of the coupling between the two 
domains. 

 
A better approach to the multidisciplinary problem involves the so-called tight coupling 

between the components, in which the different solvers operate in a more closely coordinated 
manner. In such a fashion, each of the solvers has some knowledge of the other, and the interface 
between the components allows data to be exchanged at a much higher frequency, usually at the 
inner iteration level. In the most extreme case of tight coupling, all components (fluid/heat- 
transfer/stress) are solved together simultaneously at every iteration. In this case, there is really 
only one solver. 

 
One of the major strengths of LOCI is its ability to handle all approaches, from loosely-coupled 

to tightly-coupled. When writing applications in LOCI, it is not necessary that all components of 
the application be entirely written within the rule-based framework. Applications can exist as 
independent modular components which can be linked to other components written entirely in 
LOCI by encapsulating the component as a rule. For example, LOCI has an interface to the PETSc 
[Ref. 12] linear algebra library. In both the loosely- and tightly-coupled approaches, a significant 
advantage of LOCI is its ability to check the internal consistency of a program. Often times, 
components of a multidisciplinary application may be written by different developers, who may not 
have detailed knowledge of all system components. When all components are used to solve a given 
problem, LOCI guarantees that a program schedule is generated which ensures that information 
between the components is computed at the appropriate time and all information required by each 
component is available when it is needed. If the components cannot be linked together due to an 
insufficient specification of the interface between them, LOCI informs the user that a schedule 
cannot be generated and terminates execution. This feature completely eliminates errors associated 
with inter-component coordination, which become more common in complex codes written in a 
multidisciplinary environment. 

 
(b) Grid Partitioning for Distributed-Memory Environment 

 
Regarding the second issue, one can see from the main program example in Fig. 5 that it is very 

simple to create programs which can run in a distributed memory environment. LOCI handles all 
partitioning of the problem, including the grid, the rule database and the fact database. This feature 
of LOCI is a major advantage over other approaches such as standard object-oriented C++, where 
the programmer must entirely code and debug a separate layer of the program devoted to 
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partitioning of the problem. For scientists/engineers inexperienced in the area of message-passing 
(e.g. MPI), the use of LOCI can entirely eliminate the need for this extra complexity. 

 

4.6. Plan for Implementation and Testing of STREAM-UNS-LOCI 
 

The primary criteria for judging the effectiveness of LOCI lies in answering the following 
questions: 
(1) Is there a significant advantage to be gained in program organization and simplification by 
using LOCI, in comparison with standard object-oriented C++? 
(2) The internals of LOCI are a black box to the programmer. So, are the resulting programs as 
efficient as the currently-existing version STREAM-UNS which employs standard object-oriented 
techniques in C++? 
 

In order to answer these questions, the technology of STREAM-UNS will be ported to a new 
code called STREAM-UNS-LOCI written entirely in the LOCI framework. This new code will be 
tested versus existing implementations of STREAM-UNS written using standard object-oriented 
techniques in C++, with standard MPI message passing for the distributed computing environment. 
Regarding code organization and maintenance, we have found that object-oriented techniques 
significantly improve both the initial program design as well as the ability to enhance and maintain 
codes as new features are added. Whether the use of a rule-based (as opposed to object-based) 
system improves one's ability to develop and maintain code can only be answered by a direct head-
to-head comparison. In addition, since all data is allocated and controlled by the LOCI system, the 
programmer has less control of the internal representation of the data. In traditional object-oriented 
approaches, especially for codes finely tailored to a specific application (e.g. fluid flow solvers) 
concrete data types are created which have a very narrow scope of function, but are therefore 
highly efficient. Will the more general data types provided by LOCI achieve the same level of 
performance? Results of this ongoing work will be reported at a later date in hopes that a better 
understanding of LOCI in relation to its application to pressure-based solvers can assist others in 
deciding if LOCI is a viable alternative to the more traditional approaches for program 
development. 
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