Daniel Newswander JSC/ES3 281-483-8868

JSC Thermal Vacuum Testing -Programs

Programs Supported with Thermal Testing

- Space Shuttle
- International Space Station (ISS)
- Extravehicular Activities (EVA) Space Walks
- Robotic Interplanetary Missions

JSC Thermal Vacuum Testing -Environments

Thermal Testing for Encountered Environments

- Orbital (Shuttle, ISS, EVA)
 - Thermal Vacuum
 - Thermal Cycling
- Cabin (Shuttle, ISS)
 - Thermal Cycling
- Space (Interplanetary Missions)
 - Thermal Vacuum
 - Thermal Cycling
- Planetary (Interplanetary Missions)
 - Thermal Vacuum
 - Thermal Cycling

JSC Thermal Vacuum Testing Documentation Thermal Testing Requirement Documentation

- Shuttle
 - Space Shuttle Specification Environmental Acceptance Testing (SP-T-0023B)
 - ISS
 - Qualification and Acceptance Environmental Test Requirements International Space Station Program (SSP 41172)
- EVA
 - Project Management of Government Furnished Equipment Flight Projects (EA-WI-023)
 - General Operating Procedures Manual for Engineering Directorate Testing Facilities (EA-WI-024)
- Planetary Missions
 - Testing done in accordance with JPL procedures/requirements?
- Thermal Testing Guideline Handbooks
 - Military Standard Test Requirements for Launch, Upper-Stage, and Space Vehicles (MIL-STD-1540C)
 - NASA JSC Specification Environmental Acceptance Testing (SP-T-0023B)
 - Satellite Thermal Control Handbook

- Thermal Vacuum Test, Component Qualification
 - Purpose: demonstrates the ability of the component to perform in a thermal vacuum environment that simulates the maximum and minimum predicted level temperature environment for the component

Thermal Cycling Test, Component Qualification

 Purpose: demonstrates the ability of components to operate over the design temperature range and to survive the thermal cycling screening test imposed upon the component during acceptance testing

Thermal Vacuum Test, Component Acceptance

 Purpose: detects material and workmanship defects prior to installation into a flight element by subjecting the article to a thermal vacuum environment

• Thermal Cycling Test, Component Acceptance

- Purpose: detects material and workmanship defects prior to installation of the component into a flight element by subjecting the component to thermal cycling
- Noncritical Component Testing
 - Purpose: demonstrates the functionality and reliability of the hardware while enabling lower cost and faster development due to its lower criticality

* per SSP 41172

Test	Pressure	Thermal Cycles	Dwell Time at Extremes	Thermal Margins	Hardware
Thermal Vacuum (TV), Qual	< 10 ⁻⁴ Torr	<u>≥</u> 3	12 hrs on first cycle; thereafter \geq 1 hr after reaching internal thermal equilibrium	<u>+</u> 20 F (11.1 C) beyond acc test limits. Electronics min sweep (140 F).	External
Thermal Cycling (TC), Qual	Ambient	3 x TC Acc test but not less than 24	\geq 1 hr after reaching internal thermal equilibrium	<u>+</u> 20 F (11.1 C) beyond acc test limits. Electronics min sweep (140 F).	External or Internal
Thermal Vacuum, Acc	< 10 ⁻⁴ Torr	<u>></u> 1	\geq 1 hr after reaching internal thermal equilibrium	Max acceptance limits. Electronics min sweep (100 F)	External
Thermal Cycling, Acc	Ambient	<u>></u> 8	\geq 1 hr after reaching internal thermal equilibrium	Max acceptance limits. Electronics min sweep (100 F)	External or Internal
Noncritical – TV, Qual	< 10 ⁻⁴ Torr	1.5 (2 max dwells and 1 min dwell)	12 hrs on first cycle; thereafter \geq 1 hr after reaching internal thermal equilibrium	<u>+</u> 20 F (11.1 C) beyond acc test limits. Electronics min sweep (140 F).	External
Noncritical – TC, Qual	Ambient	6	≥ 1 hr after reaching internal thermal equilibrium	<u>+</u> 20 F (11.1 C) beyond acc test limits. Electronics min sweep (140 F).	External or Internal
Noncritical – TV, Acc	< 10 ⁻⁴ Torr	1	≥ 1 hr after reaching internal thermal equilibrium	Max acceptance limits. Electronics min sweep (100 F)	External
Noncritical – TC, Acc	Ambient	3	≥ 1 hr after reaching internal thermal equilibrium	Max acceptance limits. Electronics min sweep (100 F)	External or Internal

* per SSP 41172

