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ABSTRACT

This paper describes online parameter estimation and modeling applied to a mixed conduction/radiation heat
transfer as is the case often witnessed in Space Hardware Qualification. We investigate several recent techniques
such as the Extended Kalman Filter and the Unscented Kalman Filter. Results show that EKF fails in parameter
estimation in cases where tests featured strong non linearities. UKF was found to perform well in all the
experimental test conditions.
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1. NOMENCLATURE

Control Inputs

q3 : Heat load on lens Vacuum chamber.

q4 : Heat load on Power board.

T1 : Boundary node Temperature.

State Variables

T2 : Starnav I chassis temperature

T3 : Invar Tube Temperature

T4 : Vacuum Chamber Temperature

T5 : Power Board Temperature

Model Parameters

k1 : Conductance between T2 and T1

k2 : Conductance between T2 and T3

k3 : Conductance between T3 and T4

k4 : Conductance between T4 and T2

k5 : Conductance between T2 and T5

H0 : Linearized Radiative heat transfer coefficient

m1 : Thermal mass of Starnav I Box

m2 : Thermal mass of Invar Tube

m3 : Thermal mass of Lens Vacuum Chamber

m4 : Thermal mass of Power Board
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2. INTRODUCTION

The objective often is to obtain model parameters from experimental data. We present online state and pa-
rameter estimation applied to temperature data from different environmental test on a payload (StarNav I).
A five node simplified model is built to understand the dynamics of the system. A state space model is then
built from the nodal equations of this model. The parameters (like conductance or thermal masses) are first
estimated from the observations from four thermal tests performed on the ground, using initial guesses obtained
of the CAD model built in Thermal Desktop c©9 . Using this data, a new estimation can then be performed on
the data obtained during flight for parameters which could not be obtained on the ground (environmental heat
loads).

Two methods are used to estimate the model parameters, the Extended Kalman Filter(EKF) and Unscented
Kalman Filter(UKF). Both of these methods are described briefly below.

3. KALMAN FILTER

The Kalman filter provides a recursive solution to the linear optimal filtering problem. The solution is recursive
in that each updated estimate of the state is computed from the previous estimate and the new input data, so
only the previous estimate requires storage. The Kalman filter is computationally more efficient than computing
the estimate directly form the entire past observed data at each step of the filtering process. Most of the following
information on Kalman filtering is obtained from ”Kalman Filtering and Neural Networks” by S. Haykin.1

The Kalman filter is based on the following two equations:

1. Process equation:
xk+1 = Fk+1,kxk + wk (1)

where Fk+1,k is the transition matrix taking the state xk from time k to time k+1. The process noise wk is
assumed to be white and Gaussian, with zero mean and with the covariance matrix defined by

E[wnwT
n ] =

{
Qk for n = k
0 for n 6= k

}
(2)

where the superscript T denotes transposition. The dimension of the state space is denoted by M.

2. Measurement equation:
yk = Hkxk + vk (3)

where yk is the observation vector at time k and Hk is the measurement matrix. The measurement noise vk

is assumed to be additive, white, and Gaussian, with zero mean and with the covariance matrix defined by

E[vnvT
n ] =

{
Rk for n = k
0 for n 6= k

}
(4)

In equations (1) and (3) , the measurement noise vk is uncorrelated with the process noise wk. The dimension
of the measurement space is denoted by N. The Kalman filtering process is the solving of the process and mea-
surement equations for the unknown state in an optimum manner. It uses the entire observed data y1, y2, · · · yk

to find for each k ≥ 1 the minimum mean square error estimate of the state xi.

4. EXTENDED KALMAN FILTER

The Kalman filter only addresses the estimation of a state vector in a linear model. If the model is nonlinear, the
Kalman filter can be extended through a linearization procedure yielding the Extended Kalman Filter (EKF).
This extension is feasible because the Kalman filter is described in terms of difference equations in the case of
discrete-time systems. Consider a nonlinear dynamical system described by the following state-space model:

xk+1 = f(k, xk) + wk (5)



yk = h(k, xk) + vk (6)

where wk and vk are independent zero-mean white Gaussian noise processes with covariance matrices Rk and Qk,
respectively. The functional f(k, xk) denotes a nonlinear transition matrix function that is possibly time-variant.
The functional h(k, xk) denotes a nonlinear measurement matrix that also may be time-variant.

The idea of the extended Kalman filter is to linearize the state space model at each time instant around
the most recent state estimate, which is taken to be either the current estimate xk or the prior estimate x−k ,
depending on which particular functional is being considered. After linearizing the model, the standard Kalman
filter equations can be applied. This is done in two stages:

Stage 1:

Fk+1,k =
∂f(k, x)

∂x x=xk

(7)

Hk =
∂h(k, xk)

∂x x=x−k

(8)

The ij-th entry of Fk+1,k is equal to the partial derivative of the i-th component of F (k, x) with respect to
the j-th component of x. The ij-th component of Hk is equal to the partial derivative of the i-th component of
H(k, x) with respect to the j-th component of x.

Stage 2:

Once the matrices Fk+1,k and Hk are evaluated, they are used in the first-order Taylor approximation of the
nonlinear functions F(k, xk) and H(k, xk) around xk and x−k .

F (k, xk) ≈ F (x, xk) + Fk+1,k(x, xk) (9)

H(k, xk) ≈ H(x, xk) + Hk+1,k(x, x−k ) (10)

hence the non linear state equations are given as

xk+1 ≈ Fk+1,kxk + wk + dk (11)

yk ≈ Hkxk + vk (12)

where
yk = yk − h(x, x−k )−Hkx−k (13)

dk = f(x, xk)− Fk+1,kxk (14)

5. UNSCENTED KALMAN FILTER

Because EKF relies on a linear approximation of the non linear functions F and H, it has shown to fail in
instances of strong non linearities. The Unscented Kalman filter addresses this approximation issue with UKF.
The distribution of the state variable is represented by a Gaussian random variable, and is specified using a
minimal set of carefully chosen sample points. The sample points capture the mean and covariance of the
Gaussian random variable1234 .

Unscented Transformation

The Unscented Transformation is a method for calculating the statistics of a random variable which undergoes
a nonlinear transformation. For more information refer.1

Unscented Kalman Filter

The Unscented Kalman filter is an extension of the Unscented Transformation. No explicit calculations or
Jacobians or Hessians are necessary to implement this algorithm.



6. APPLICATION TO STARNAV I
StarNav I is an advanced star tracker designed and built by the Spacecraft Technology Center and the Aerospace
Engineering Department at Texas A&M University, It flew during the STS-107 mission aboard the Space Shuttle
Columbia. Its objective was to validate the Lost in space algorithm (LISA) developed by Dr. Junkins for
determining precise spacecraft attitude without prior knowledge of position.6 In order to successfully pass
safety reviews, the StarNav I payload went through different thermal vacuum tests. The goal of this paper is
to show how the thermal model of the payload was estimated through the course of the various thermal tests.

6.1. Starnav Simplified Thermal Model
The Thermal Desktop c©9/SINDA conductance model of StarNav I must be reduced in order to be able to
compare temperature data provided by the experimental tests. A simplified thermal model of 5 nodes was
devised -see Figure 1. Each node represents different interconnected parts of the instrument.

The equations used to derive the state model from this simplified model are given below:

Node 1: Boundary node (Describes the temperature of the environment)

Node 2: Starnav I box

m1
d

dT
T2 = k2(T3 − T2) + k4(T4 − T2) + k5(T5 − T2)−K1(T2 − T1)−H0(T2 − T1) (15)

Node 3: Invar Tube (containing optics)

m2
d

dT
T3 = k3(T4 − T3)− k2(T3 − T2) (16)

Node 4: Vacuum Chamber

m3
d

dT
T4 = q3 − k3(T4 − T3)− k4(T4 − T2) (17)

Node 5: Power Board
m4

d

dT
T5 = q4 − k6(T5 − T1)− k5(T5 − T2) (18)

Writing this system of equations in state form we obtain:

d

dT


T2

T3

T4

T5

 =


− (k1+k2+k4+k5+H0)

m1

k2
m1

k4
m1

k5
m1

k2
m2

−k2+k3
m2

k3
m2

0
k4
m3

k3
m3

−k3+k4
m3

0
k5
m4

0 0 −k5+k6
m4




T2

T3

T4

T5

 +


0 0 k1+H0

m1

0 0 0
1

m3
0 0

0 1
m4

0


 q3

q4

T1


(19)

Initial guesses of the different conductances of the model were devised through conductance computation
of the CAD model of StarNav I in Thermal Desktop c©.9 As mentioned earlier, four thermal tests were
conducted on the ground on StarNav I and the data from these tests is used as observations to estimate the
model parameters using both Extended Kalman Filter and Square root Unscented Kalman Filter. The dual
estimation using these methods is performed with the help of a tool called REBEL which stands for Recursive
Bayesian Estimation Toolkit and was developed by Rudolph van der Merwe and Eric A. Wan8



7. GROUND TEST DESCRIPTION AND RESULTS
The results obtained from the test data parameter estimation process are described below.

For Figures 3 to 12, it can can be observed that the estimated states (temperatures of the invar tube-T3, the
vacuum chamber-T4, and the power board-T5) are correlating with the observation (top section of the figure)
and that the estimated parameters (bottom section) are converging toward a asymptotic value quickly. The
initial discrepancy between state and observation is due to the parameter estimation.

Test-A1 This test was conducted in thermal vacuum at 290K. The results from the test and parameter
estimation subroutines are presented in Figures 3 and 4. Figure 3 presents estimation using the Square Root
Unscented Kalman Filter. The bottom part presents the estimation of 1

m4
and k4

m3
, where m4 is the thermal

mass of the power board, m3 the thermal mass of vacuum chamber, and k4 the conductance between T4 and
T2. Figure 4 presents the results obtained using the Extended Kalman Filter. These results are essentially the
same as the ones presented in Figure 3 using UKF.

Test-A2 This test was conducted in thermal vacuum at 290K. The results from the test and parameter
estimation subroutines are presented in Figures 5 and 6. Figure 5 presents estimation using the Square Root
Unscented Kalman Filter. The bottom part presents the estimation of 1

m3
and k5

m4
, where m3 is the thermal

mass of the vacuum chamber, m4 the thermal mass of the power board, and k5 the conductance between T2
and T5. Figure 6 presents the results obtained using the Extended Kalman Filter. These results are essentially
the same as the ones presented in Figure 5 using UKF.

Test-A3 This test was conducted in thermal vacuum at 290K. The results from the test and parameter
estimation subroutines are presented in Figures 7 and 8. Figure 7 presents estimation using the Square Root
Unscented Kalman Filter. The bottom part presents the estimation of k2

m2
and k3

m3
, where m2 is the thermal

mass of the invar tube, m3 the thermal mass of the vacuum chamber, k2 the conductance between T2 and T3,
and k3 the conductance between T3 and T4. Figure 8 presents the results obtained using the Extended Kalman
Filter. These results are essentially the same as the ones presented in Figure 7 using UKF.

Test-A4 This test was a thermal cycling test conducted in vacuum from +40C to -20C. The results from
the test and parameter estimation subroutines are presented in Figures 9. This figure presents estimation using
the Square Root Unscented Kalman Filter. The bottom part presents the estimation of k2

m1
and k3

m2
, where

m1 is the thermal mass of the StarNav I chassis, m2 the thermal mass of the invar tube, k2 the conductance
between T2 and T3, and k3 the conductance between T3 and T4. For this test the Extended Kalman Filter
failed. This could be due to the fact that non linearities are much stronger in this test (T 4 variations) due to
large variation of the environmental temperatures.

Test-A5 This test was done at Kennedy Space Center. The primary objective of this test was to estimate
the contact conductance from the startracker to the Spacehab module in the shuttle bay. The results from the
test and parameter estimation subroutines are presented in Figures 10 and 11. Figure 10 presents estimation
using the Square Root Unscented Kalman Filter. The bottom part presents the estimation of k1

m1
, where m1 is

the thermal mass of the StarNav I chassis, and k1 the conductance between T2 and T1. Figure 11 presents the
results obtained using the Extended Kalman Filter. These results are essentially the same as the ones presented
in Figure 10 using UKF.

The final values of the estimated parameters are:

k1 = 0.79 W/C

k2 = 0.40 W/C

k3 = 0.21 W/C

k4 = 0.47 W/C

k5 = 1.65 W/C

m1 = 3371.8 J/C

m2 = 185.96 J/C

m3 = 255.42 J/C

m4 = 277.9 J/C



8. FLIGHT DATA

Estimation of on orbit environmental heat loads is the last step of this study. Five sets of Data called ’alpha’,
’gamma’, ’delta’, ’epsilon’ and ’tau’ were collected during the mission. Estimations of these heat loads were
performed and estimated. Figures 12 to 20 show initial results for the state and parameter estimations obtained.

9. CONCLUSIONS

The concept of online parameter estimation using both Extended and Unscented Kalman Filtering techniques
has been presented and successfully applied to test data from ground testing of a star tracker in vacuum. These
parameters were conductance values as well as thermal mass values. It has been observed that the Extended
Kalman Filter does not perform well with significantly varying environmental temperatures. We believe this is
due to the strong non linearities induced by the T 4 terms in the dual estimation problem.
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Figure 1: StarNav I design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Starnav I simplified thermal model 
 

 



 
Figure 3: Ground Test 1 Estimation using SRUKF 

 

 
Figure 4: Ground Test 1 Estimation using EKF 



 
Figure 5: Ground Test 2 Estimation using SRUKF 

 

 
Figure 6: Ground Test 2 Estimation using EKF 

 



 
Figure 7: Ground Test 3 Estimation using SRUKF 

 

 
Figure 8: Ground Test 3 Estimation using EKF 



 
Figure 9: Ground Test 4 Estimation using SRUKF 

 

 
Figure 10: Ground Test 5 Estimation using SRUKF 



 
Figure 11: Ground Test 5 Estimation using EKF 

 

 
Figure 12: Flight Results ‘alpha’ using SRUKF 



 
Figure 13: Flight Results ‘gamma’ using SRUKF 

 
 

 
Figure 14: Flight Results ‘gamma’ using EKF 



 
Figure 15: Flight Results ‘delta’ using SRUKF 

 
 

 
Figure 16: Flight Results ‘delta’ using EKF 



 
Figure 17: Flight Results ‘epsilon’ using SRUKF 

 
 

 
Figure 18: Flight Results ‘epsilon’ using EKF 



 
Figure 19: Flight Results ‘tau’ using SRUKF 

 

 
Figure 20: Flight Results ‘tau’ using EKF 


