

Thermal & Fluids Analysis Workshop TFAWS 2004 Jet Propulsion Laboratory

Pasadena, CA. August 31, 2004

NASA Reentry Material Technology Test and Evaluation

Langley 8-ft High Temperature Tunnel Aerothermal Ground Testing

Gerald Russell / AMRDEC Joe Raymond & Forrest Strobel/ ITT Jimmy Lee, Susan Spencer, Tony Oneil/NASA MSFC

September 2, 2004

Aerothermal Ground Test Objective

 Conduct a screening test and evaluation program to identify best candidates for hypersonic/space exploration flight test demonstration

 Maximize leveraging/collaboration with NASA/DoD programs requiring material aerothermal test data

NASA Aerocapture/Hypersonics

- •DARPA/Air Force (FALCON/CAV/RESE, SBIRs)
- •NAVY (HyFLY, SBIRs)
- •Army (Hypersonic Scramjets, Missiles, SBIRs)

Ground Testing Will Evaluate:

- Seal & Attachment Technology
- TPS Thermal Performance
- Instrumentation
- Bondline Performance
- TPS Candidate Technologies:
 - Metallics
 - Blankets
 - Tiles
 - Ablative/decomposing
- Instrumentation Technologies:
 - Ablation Rate Sensors
 - Heat Flux Gages
 - Embedded Thermocouples

Ground Test Candidate Materials

TPS Candidate	Classification	Vendor		
CRI	Blanket/NASA	Boeing		
AETB/TUFI	Tile/NASA	Ames Research Center		
20° ply angle 2D C-C with RTV-12 (new MX-4830)	Carbon-Carbon/CAV	ATK Thiokol		
Ceramic Foam	CMC Foam/NASA	Ames Research Center		
SC-20	Ablative/NASA	Applied Research Associates		
Hyperlite C	Ablative/NASA	Applied Research Associates		
C-SiC	CMC/DoD/NASA	Physical Sciences Incorporated		
MSTPS C-C RTV	Ablative/DoD/NASA	Aerothermo Technologies		
RX2390	Ablative/DoD	Mineral Technologies		
TMC	Metallic/NASA	FMW Composites		
CeramARC	Ceramic/NASA/DoD	FMW Composites		
Intergral TPS	Ablative/DoD	Vanguard Composites		
20° ply angle 2D C-C with RTV-12 (FiberCote)	Carbon-Carbon/CAV	ATK Thiokol		
20° ply angle 2D C-C with RTV-12 (Lewcott)	Carbon-Carbon/CAV	ATK Thiokol		
Carbon-Carbon	Ablative/DoD/NASA	Fiber Materials Inc		
Carbon Carbon-Silicon Carbide	Carbon Carbon-Silicon Carbide Ablative/DoD/NASA Fiber Materials Inc			
HotBlox	Ceramic/NASA/DoD	Raytheon/American Technical Coatings		
Acusil-2 Panel		AMRDEC/ITT		
Molybdenum Plate	Calorimeter Plate	AMRDEC/ITT		
TC Plugs/ARADS/Heat Flux Gages	Instrumentation Data	Possible Aerocapture Interest		

Ground Aerothermal Testing

Ground Aerothermal Testing

- Simulate aerothermal environments of interest
 - Shear
 - Recovery conditions
 - Pressure
 - Test duration (limited compared to flight test time)
- Conduct facility assessment for appropriate test validation
- Assess external TPS attachment and seal concept
- Collect thermal response data for model validation
- Assess flight instrumentation technology

Ground Aerothermal Testing

Ground Aerothermal Test Facility Conditions

Flow Duration

ARC Test Facility Condition Envelopes

7

Facility Comparison

Parameter	arameter Flight		LaRC 8-ft HTT	AMES PTF	
Mach	5 - 10	5.9 - 7.8	7	5.5	
Enthalpy (BTU/lbm)	492-1268	1800 – 2500	785 BTU/Ibm max (Temp = 3650 R)	2000 - 14000	
Heat Flux (BTU/ft ² -sec)	15 - 110	50	5.9 – 39.8	0.5 - 75	
Edge Pressure (atm)	0.04 - 0.28	0.12	0.025 - 0.129	0.0005 – 0.05	
Test Duration	600 seconds	Up to 20 minutes	120 seconds	30 minutes	
Test Article Size	Reentry Vehicle	Up to 24 inch nozzle exit available	8 ft diameter by 12 ft long test section. Full size vehicle can be tested or full scale panel utilizing the HTT panel holder.	Test fixture for 14" x 14" flat panels	
Comments	Pull out condition is severe	High enthalpy facility. Expanding flow in test section produces non- uniform conditions on test panel	Matches most parameters of interest but is limited in test duration	High enthalpy low pressure. Would not provide a good evaluation of the sealing concepts.	

Langley 8-ft HTT Test Section

- Mach 7 flow provided at 8-ft diameter nozzle exit
- Test Section is 12-ft long
- A 16-ft. I.D. pod intersects the test section from the bottom, containing a model injection system that can insert the model into the flowfield once steady flow has been achieved
- Diffuser system for attaining supersonic flow
- A 3.5 ft. x 5 ft. panel test fixture is available

Selected Test Conditions: LARC 8-ft HTT Panel

Selected Test Conditions: Peak Facility Operating Conditions at Mach 7, 80-100 kft:

- 2000 psia freestream pressure
- 3190°F total temperature
- 120 second total test time at peak
- Vary Panel Angle from 0-degrees at startup to a 5 or 15 degree angle of incidence (Low and High Test Conditions)

Panel Angle Prescriptions of High and Low Test Conditions

High Prescription				Low Prescription			
Time (sec)	Panel Angle (deg)	P _e (atm)	H _R (BTU/lbm)	Time	Panel Angle (deg)	P _e (atm)	H _R (BTU/lbm)
0	0	0.025	786	0	0	0.025	786
5	0	0.025	786	5	0	0.025	786
5	15	0.129	773	5	5	0.037	777
120	15	0.129	773	120	5	0.037	777

Coldwall Heat Flux and Shear versus Panel Angle for Selected LARC Test Conditions

Predicted Surface Temperatures for 2-inch thick Silica Phenolic for Selected LaRC Test Conditions

Test Panel Configuration

3.5 x 5 ft. test fixture Three Panels will be tested **TPS** experiment panels simultaneously • Silica phenolic holders: Rear Panel will be Constructed of separate panels of interchangeable with silica phenolic that are attached with a CRI interface panel mortis and tenon joints and bonded 90 degree lay-up relative to heated surface Silica phenolic holder 2X PS-WE-0103 PS-WF-010699 TPS HOLDER ASSEMBLY LaRC HTT Test Fixture

4X PS-WF-01070

Interface Design

Test Fixture Design Verification

HTT Test Hardware Configuration with CRI Interface Installed

Interface Hardware / TPS Experiments

- All vendors have received Silica Phenolic panel holders
- TPS Samples should begin arriving at ITT in August.
- 1 NASA Ames Sample has been received

- Fabrication of all interface hardware is complete except for CRI blanket interface
- Design of CRI interface is complete, fabrication by Millennium Machine is in-process

Calorimeter Design

- A thin skin calorimeter design has been developed for flight
- Candidate materials included 17-4PH steel, molybdenum, and oxygen free high conductivity (OFHC) copper
- Trade-off studies conducted to select material and thickness
- Thin skin criteria (ht/k < 0.1) applied in evaluating the materials
- 17-4PH experienced excessive temperatures
- OHFC copper needed to be excessive thick (2 inch) to remain at acceptable temperatures
- Molybdenum, with a 0.25 inch thickness was selected for the design
 - Temperature < 1800 °F
 - Low thermal expansion

Calorimeter Plate Instrumentation

- Calorimeter will be evaluated in HTT test and used to measure the facility heat flux
- Instrumentation includes 8 thermocouples and 2 pressure transducers
- Thermocouples used for redundancy and to quantify three dimensional conduction effects

Pressure Transducers

Instrumentation Technology Panel

Instrumentation Test Hardware

MULTI-ELEMENT SIP QUAD EMBEDDED PLUG THERMOCOUPLE HAS TPS PLIES IN THE REQUIRED ORIENTATION FOR TESTING

Ground Test Candidate Instrumentation/Database

•Vendors will instrument samples to obtain in depth thermal response

•Vendors will provide thermophysical properties

•Measured data and thermophysical properties will assembled in report and database for future material design model development if desired

- •Decomposition Kinetics
- •Density
- •Thermal Conductivity
- •Specific Heat
- •Dimensions (TC locations, Layers)
- •Emissivity

Preliminary Test Matrix

Test/Conditions		Position 1		Position 2		Position 3	
Test Day	Test Condition	TPS Candidate	Vendor	TPS Candidate	Vendor	TPS Candidate	Vendor
1	Calorimeter Plate Prescription, 10 seconds at 0, 5, 10, and 15-deg	Calorimeter Plate	AMRDEC/ITT	Calorimeter Plate	AMRDEC/ITT	Calorimeter Plate	AMRDEC/ITT
2	High	AETB/TUFI	Ames Research Center	Ceramic Foam	Ames Research Center	Calorimeter Plate	AMRDEC/ITT
3	High	PhenCarb-20	Applied Research Associates	SRAM-20	Applied Research Associates	SRAM-17	Applied Research Associates
4	High	C-SiC	Physical Sciences Incorporated	3D C/C-SiC with a SiC- Rich Seal Coat	Fiber Materials Inc	2D C/C-SiC with a SiC Rich Seal Coat	Fiber Materials Inc
5	High	MSTPS C-C RTV	Aerothermo Technologies	Regular HotBlox	Raytheon/America n Technical Coatings	HotBlox Light	Raytheon/America n Technical Coatings
6	High	20-deg play angle staple PAN-based 2D C-C with RTV-12 (new MX-4830)	ATK Thiokol	20-deg play angle staple PAN-based 2D C-C with RTV-12 (FiberCote)	ATK Thiokol	20-deg play angle Needled PBCF-based 2D C-C with RTV-12 (Lewcott)	ATK Thiokol
7	High	Calorimeter Plate	AMRDEC/ITT	Silica Phenolic Instrumentation Technology Panel	AMRDEC/ITT	CeramARC	FMW Composites
8	Low	RX2390 (1)	Mineral Technologies / NAWC	RX2390 (2)	Mineral Technologies / NAWC	Acusil 2	AMRDEC/ITT
9	Low	ТМС	FMW Composites	Intergral TPS	Vanguard Composites	Calorimeter Plate	AMRDEC/ITT
10	Low - CRI Panel aft of TPS Experiment positions	Calorimeter Plate	AMRDEC/ITT	Calorimeter Plate	AMRDEC/ITT	Calorimeter Plate	AMRDEC/ITT

Summary

Ground aerothermal test and evaluation planned for October 2004

- Langley Research Center High Temperature Tunnel (HTT)
- Variety of candidate material technologies considered to include projected reusable technology such as blankets, tiles, and metallics as well as a significant number of ablative material technologies supporting NASA and DoD
- Instrumentation candidate technology test and evaluation