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Overview

• A comparison of engineering level and full Navier-Stokes predictions of 
flow-field heating conditions was made for a series of aerothermal tests 
performed at the Naval Air Warfare Center Air Breathing Engine and 
Aerothermal Test Facility, T-Range, in China Lake CA.

• Thin skin calorimeters were used to quantify the aerothermal boundary 
conditions imparted to a test fixture.

• The engineering level analysis code ATAC3D, developed under an Army 
SBIR, was used to derive the local boundary conditions.

• The full Navier-Stokes computational fluid dynamics code OVERFLOW 
was used to quantify the relative flow field and resulting heat fluxes for 
comparison to the engineering predictions and data

• This presentation will discuss the analytic and experimental methods 
utilized to determine boundary conditions and possible flowfield effects on 
a complex test fixture.



T-Range Capabilities

• High-Pressure Air Blow Down 
Facility

• 2900 cu ft of air stored at 3000psia
• Propane/Air combustion used to 

raise enthalpy of air increased
• Air exhausted to atmosphere at 

2300 ft above sea level
• Makeup oxygen used for engine 

testing to replace that used in 
propane/air combustion 



T-Range Capabilities

• Air, propane and O2 digitally 
controlled by PC running LabView 
with full proportion-integral-
differential gain control loops 

• Tt of air adjusted w/mass flow to 
match hot wall heat fluxes and 
surface temperatures in flight

• Free-jet nozzles: Pt in air heater 
held constant so flow is perfectly 
expanded to avoid shocks and 
expansion waves

• Direct-connect engines: Computer 
control used to vary Pt and T to 
match variation due to missile 
altitude and velocity changes

Test article in 
nozzle free-

jet

Test article in 
nozzle free-

jet



T-Range Enhancements

• New air heater and nozzle 
being installed
– Capable of continuous

operation at 4500 °F
– Nozzle (13.4” exit) will 

operate at Mach 3.65
– SUE burner uses a replaceable 

water-cooled liner to increase 
mass flow and Tt for both test 
cells

• Additional air storage, 
totaling 4650 cu. ft.
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T-Range Enhancements

• Stagnation heating rates 
up to 1000 btu/ft2-sec
(ref: 2-inch diameter 
hemisphere)



T-Range Flow Conditions

• Facility Conditions for Current Test
– Mach 1.9 Semi-Contoured Nozzle, PCHAMBER=90 psi (mass flow, mDOT, 

and TCHAMBER were variable to match transient environment of interest)
– Facility channel labeled TPL-1 was used as a measure of chamber 

temperature.  The value of TPL-1 was used as the total temperature in 
both ATAC3D and OVERFLOW

9” Nozzle Exit

4” Nozzle Throat

18”

Mach 1.9 Nozzle Contour



Wedge Test Fixture
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Thin Skin Calorimeter Design
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3-D Finite Element Analysis

FEA provided comparison of 
1-D versus 3-D thermal 
response of calorimeter

Detailed FEA provided 
confidence in calorimeter 
thermostructural response



ATAC3D Analysis Configurations

• 0.03” Radius LE
• 3.35° Fin Leading Edge Half Angle
• 15° 2nd Wedge
• 12° Test Section Wedge

• 0.03” Radius LE
• 3.35° Fin Leading Edge Half Angle
• 15° 2nd Wedge
• Flat Test Section Wedge

Plane of Symmetry

Plane of Symmetry



Comparison of Thin Skin Data and 
Predictions Profile 3 Wedge

Data Compared With Predictions for Profile 3
Wedge Thin Skin Tests Using TPL-1 Chamber Condition

0.125" & 0.069" Thin Skin
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for wedge configuration



Comparison of Thin Skin Data and 
Predictions Profile 4 Wedge

Data Compared With Predictions for Profile 4
Wedge Thin Skin Tests Using TPL-1 Chamber Condition

0.125" & 0.069" Thin Skin
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Profile 1 Predictions and Data
Flat Test Section

TC15 Baseline Analysis Prediction

TC16 Data

TC15 Modified
h/cp Prediction
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Profile 2 Predictions and Data
Flat Test Section 

TC11,15

Baseline TC15

55% Modified h/cp TC15
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Predictions and Data Comparison

• Why does ATAC3D provide good agreement for the 
12 degree wedge calorimeter data but over predicts 
the thermal response for the flat configuration?
– Laminar versus Turbulent flow?
– Flow separation?
– Prandlt-Meyer expansion fan causing below ambient 

pressure distribution?
– Need to assess engineering method for predicting heating

• CFD was utilized to visualize the flowfield over the 2 
configurations and provide a more rigorous 
characterization of the aerothermal environment



CFD Modeling Assumptions

• OVERFLOW full Navier-Stokes code 
• 3-dimensional flow
• Real gas effects
• Nozzle contour modeled
• Boundary layer resolved for various 

chamber and wall temperatures of interest: 
(1200°F-300°F,600°F:1800°F-300°F, 
800°F)



Velocity Contours

Non-dimensionalized by the free-stream speed of sound (337.9 m/s, 1108.6 ft/s)



Mach Number Profile

T0=1200F, Twall = 300F
Boundary Layer well resolved at the wall for both velocity and temperature.

No Flow Separation & Verified Uniform Flow



Static Pressure (P amb. = 1.0)

Low pressure on the bottom, flat, surface



Static Temperature (T amb. = 511R).  



CFD Static Pressure on Flat Test Fixture

0.5<Ps (atm)<2.5 0.5<Ps (atm)<1.0

Sub-ambient and variable pressure at calorimeter station



CFD Surface Static Pressure (psia)

FLATWEDGE



CFD Surface Recovery Temperature

FLATWEDGE

Note: Trec is computed by extrapolating from two 
isothermal wall solutions (300F and 600F) to the adiabatic 
wall temperature.



CFD Convective Heat Flux at Twall = 300°F

FLATWEDGE



CFD Shear Stress

FLATWEDGE



ATAC3D Shear Stress
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ATAC3D Edge Pressure

1800 F Total Temperature
Edge Pressure
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Heat Flux Comparison of
ATAC3D and CFD

1200 F Total Temperature
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Heat Flux Comparison of
ATAC3D and CFD

1200 F Total Temperature
Wall Heat Flux 600 Wall
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Heat Flux Comparison of
ATAC3D and CFD

1800 F Total Temperature
Wall Heat Flux 300 F Wall

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

Axial Station (in)

H
ea

t F
lu

x 
(B

tu
/ft

2-
se

c)

Flat CFD
Wedge CFD
Wedge ATAC3D
Flat ATAC3D

Cal Plate Center for Wedge

Cal Plate Center for Flat



Heat Flux Comparison of
ATAC3D and CFD

1800 F Total Temperature
Heat Flux 800 F Wall
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Assessment of ATAC3D
Cone/Cylinder Heat Flux

Conical Model
3.35°/15°/12° Cones

3.35°/15°/0° Cones/Cylinder
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Summary
• An aerothermal test series was conducted and calorimetry was 

utilized to verify boundary conditions delivered by the NAWC 
T-Range Facility to a wedge test fixture

• This effort is representative of the process which should be 
used for all aerothermal test and evaluation efforts
– Quantify flight boundary conditions
– Select appropriate aerothermal test facility/facilities
– Design and analyze appropriate test fixture to ensure predictable 

environments are imparted to test specimens
– Design and test calorimeters in position of interest
– Verify predicted conditions with measured calorimeter data
– Utilize CFD if flow fields are complex or uncertainties exist in

aerothermal boundary conditions



Summary Continued
• Calorimeters

– Thin skin calorimeters provided accurate thermal response data for 
quantifying convective boundary conditions

– Pressure gages provided verification of uniform flow for wedge 
configuration (were not integrated into flat test fixture)

• Boundary Condition Predictions
– Wedge: ATAC3D provided reasonable agreement for 12 degree wedge 

configuration where angle change between the two wedges was small (15 
degree to 12 degree)

– Flat Plate:  ATAC3D predictions over predicted the calorimeter data by 
approximately 45%

– Overflow Code (CFD) provided detail predictions of flowfield variation 
over test fixture in agreement with measured data and verified reduced 
ATAC3D boundary condition prediction were necessary

– ATAC3D axisymmetric model for a cone/cylinder provided more realistic 
heat flux drops for the given angle changes suggesting confidence in the 
ATAC3D predictions for missile shapes

– The ATAC3D 3-dimensional wedge model predictive techniques needs to 
be investigated and modified



Future Efforts

• Verify/modify ATAC3D analytic method for predicting 
aerothermal environments on wedges

• Modify ATAC3D to support stagnation lines on cylinders 
in cross-flow

• Continue simplification of geometry builder for ATAC3D
• Couple ATAC3D with CFD solutions for corrected edge 

conditions in complex flow regimes
• Continue development of material database interface for 

ATAC3D
• Provide guidance to T-Range customers on test fixture 

requirements to ensure acceptable and predictable flow 
fields and aerothermal environments


