

Aerothermal Capabilities at Sandia National Laboratories

Ryan Bond Don Potter Dave Kuntz Adam Amar Justin Smith

Aerosciences and Compressible Fluid Mechanics Department

Thermal and Fluids Analysis Workshop

August 9, 2005

Orlando, Florida

Approved for unlimited release as SAND 2005-4513P

Sandia's Historical Roots in Hypersonic Reentry Systems

U.S. RV Performance

- Ballistic vehicle dynamic behavior
- Component environments and performance

Materials Development

- Heatshields
- All carbon-carbon vehicles
- Antenna windows
- Nosetips

Hypersonic Vehicle Recovery

- Pioneered the soft recovery of hypersonic vehicles for post-flight inspection

Aerothermal Flight Vehicle Support

Minuteman Launch from VAFB

- More than 100 Instrumented RV/RB's flown (1968-present)
- 7 Carbon-Carbon vehicles
- 6 RV's soft recovered
- 10 RV's on 9 AO's [USAF;MM III & PK]
- 9 RB's on 4 DASO's [USN]
- Most vehicles, One-of-a-kind, unique R & D tests
- High risk, excellent track record [>96% of flight test objectives satisfied]

GRANITE

NASA SHARP-B01 Vehicle

Presentation Topics

 Aerothermal Analysis Tools

• Aerothermal Flight Vehicle Instrumentation

Aerothermal Analysis Tools

- Flowfield/Aerodynamic Heating
- Material Thermal Response
- Nosetip Heating/Ablation
- **RF Attenuation**
- Analysis Tools Currently Under Development

Flowfield/Aerodynamic Heating Codes

- HANDI
 - Set of correlations for computing heating on several standard geometries (spheres, flat plates, cylinders, ...)
- **BLUNTY**
 - Correlation-based heating code for sphere-cone geometries
 - Ideal for trade studies and quick investigations
- **2IT/SANDIAC/HIBLARG**
 - Set of inviscid/integral boundary layer codes
 - Used for spherically-capped analytical geometries at angle-of-attack
- SACCARA
 - Finite-volume Navier-Stokes code
 - Used for obtaining flowfield solutions on complex geometries at all speed ranges

- Charring Materials Ablation code (CMA)
 - One-dimensional code with in-depth decomposition
 - Q* and equilibrium chemistry ablation models available
- Sandia One-Dimensional Direct and Inverse Thermal code (SODDIT)
 - One-dimensional code with direct and inverse capabilities
 - Q* and equilibrium chemistry ablation models available
 - Radiation gap model included
- Ablating Version of COYOTE
 - Two and three-dimensional finite element code modified to include aeroheating and ablating boundary conditions and moving mesh capabilities for modeling surface recession
 - Used as both production tool and research tool for investigating coupling approaches for aerothermal problems

- Sample Results:
 - Reentry vehicle thermal response
 - Heating computed with 2IT/SANDIAC/ HIBLARG
 - Heatshield response computed with CMA

- Sample Results:
 - Hypersonic vehicle control fin thermal response
 - Heating computed with HANDI
 - Fin thermal response computed with the ablating version of COYOTE

• Sample Results: Coupled Ablation / Material Thermal Response

Nosetip Heating/Ablation

- ABRES Shape Change Code (ASCC86)
 - Inviscid flowfield computed with correlations and engineering-based approaches
 - Heating computed with Momentum/Energy Integral Technique (MEIT)
 - Steady state and transient conduction options available
 - Ablation computed with an equilibrium chemistry model
 - Numerous atmospheres and transition models available

Nosetip Heating/Ablation

• ASCC Sample Solution

RF Attenuation

- Poly-Iterative Reacting Aero-Thermal Evaluation (PIRATE)
 - Performs iterative thermal response analysis until body surface temperature convergence is reached over the entire trajectory
 - Calls numerous aerothermal codes including:
 - TAOS/SIXDOF- Trajectory simulation program
 - BLUNTY Reference boundary layer heating (used in iterative process)
 - 2IT/SANDIAC/HIBLARG Reference boundary layer heating
 - BLIMP Reacting boundary layer blown
 heating
 - ACE Surface chemistry
 - CMA Thermal response
 - EMLOSS Plane wave plasma interaction

- Advanced Simulation and Computing (ASC) Codes
 - Premo Compressible Fluid Mechanics Code
 - Full Navier-Stokes capability
 - Unstructured mesh
 - Equilibrium and finite-rate chemistry (under development)
 - Calore Conduction Code
 - Unstructured mesh finite element conduction code
 - Aeroheating and ablating boundary conditions (under development)
 - ASC code architecture will allow communication between Premo and Calore for coupled aeroheating/material thermal response solutions

- High Speed Tool for Computing Aeroheating on Arbitrary Geometries
 - New capability currently under development will couple Premo (inviscid solutions) with SAPHIRE (boundary layer solutions)
 - Coupled set of codes will permit rapid heating solutions to be computed on complex, non-spherically-capped geometries

Chaleur

- -1-D Material Thermal Response Code
 - Planar, Cylindrical, and Spherical Geometries
- Q* and Equilibrium Chemistry Ablation Models
- Aerodynamic Heating Capability
- In-Depth Decomposition

- Chaleur (cont.)
 - Differences from (Improvements over) CMA
 - Residual Formulation of Governing Equations
 - Control Volume Finite Element Spatial Discretization
 - Implicit and Trapezoidal Time Integrators
 - Contracting Grid Scheme
 - Nonlinear Iteration on Entire Equation Set
 - No thermal property or surface recession rate lag
 - Continuity Equation and Porous Flow
 Momentum Equation
 - Predicts pressure in porous char layer

Flight Vehicle Thermal Instrumentation

- Thermocouple Plugs
- Acoustic Recession Gages
- Photodiode Transition Indicators

- Typical Thermocouple Plug
 - Tungsten-5% Rhenium vs. Tungsten-26% Rhenium thermocouples
 - Published voltage output values up to 4,660 °R
 - Up to three thermocouples per plug

Typical Plug Design:

Thermocouple Design:

All Dimensions in Inches

• Sample Flight Data

Time

Flight Vehicle Nosetip Recession Gage

- Acoustic Recession Gage
 - Used successfully on nosetips, antenna windows, and flaps
 - Transducer mounted directly on the back face of the ablating material
 - Acoustic wave transmitted by the transducer and reflected off the ablating surface
 - Acoustic "time of flight" used to determine instantaneous ablator thickness

Flight Vehicle Nosetip Recession Gage

Laboratories

Nosetip recession measured acoustically

Flight Vehicle Nosetip Recession Gage

Sample Waveform:

- Photodiode Transition Indicator
 - Optical technique for determining boundary layer transition
 - Photodiode mounted beneath a transparent quartz window
 - Voltage across a resistor used as the photodiode "signal"
 - Technique would require additional development to be used again

• Photodiode Transition Indicator Hardware

• Sample Flight Data

Summary

- Sandia has extensive hypersonic and reentry vehicle flight testing experience
- Analysis capabilities exist which cover nearly all aspects of vehicle aerothermal performance
- Sandia has developed and worked with numerous types of flight vehicle instrumentation for measuring aerothermal characteristics during flight

