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Sandia’s Historical Roots in
Hypersonic Reentry Systems

U.S. RV Performance
- Ballistic vehicle dynamic 

behavior
- Component environments 

and performance

Materials Development
- Heatshields
- All carbon-carbon vehicles
- Antenna windows
- Nosetips

Hypersonic Vehicle Recovery
- Pioneered the soft 

recovery of hypersonic 
vehicles for post-flight 
inspection
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inspection



Aerothermal
Flight Vehicle Support

More than 100 Instrumented RV/RB’s
flown (1968-present)

7 Carbon-Carbon vehicles

6 RV’s soft recovered

10 RV’s on 9 AO’s [USAF;MM III & PK]

9 RB’s on 4 DASO’s [USN]

Most vehicles, One-of-a-kind, unique 
R & D tests

High risk, excellent track record       
[>96% of flight test objectives 
satisfied]

SAMAST/MINT
All Carbon-Carbon
Vehicle

NASA SHARP-B01
Vehicle

MaST Recovery
Vehicle

MaST
Payload

Minuteman Launch
from VAFB

GRANITE



Presentation Topics
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• Aerothermal
Analysis Tools

• Aerothermal Flight 
Vehicle 
Instrumentation



Aerothermal
Analysis Tools

• Flowfield/Aerodynamic Heating

• Material Thermal Response

• Nosetip Heating/Ablation

• RF Attenuation

• Analysis Tools Currently Under Development



Flowfield/Aerodynamic 
Heating Codes

• HANDI
– Set of correlations for computing heating on several 

standard geometries (spheres, flat plates, cylinders, . . .)

• BLUNTY
– Correlation-based heating code for sphere-cone 

geometries
– Ideal for trade studies and quick investigations

• 2IT/SANDIAC/HIBLARG
– Set of inviscid/integral boundary layer codes
– Used for spherically-capped analytical geometries at 

angle-of-attack

• SACCARA
– Finite-volume Navier-Stokes code
– Used for obtaining flowfield solutions on complex 

geometries at all speed ranges



Material Thermal 
Response Codes

• Charring Materials Ablation code (CMA)
– One-dimensional code with in-depth decomposition
– Q* and equilibrium chemistry ablation models available

• Sandia One-Dimensional Direct and Inverse Thermal code 
(SODDIT)
– One-dimensional code with direct and inverse capabilities
– Q* and equilibrium chemistry ablation models available
– Radiation gap model included

• Ablating Version of COYOTE
– Two and three-dimensional finite element code modified to include 

aeroheating and ablating boundary conditions and moving mesh 
capabilities for modeling surface recession

– Used as both production tool and research tool for investigating
coupling approaches for aerothermal problems



Material Thermal 
Response Codes

• Sample Results:

– Reentry vehicle 
thermal response

– Heating computed 
with 2IT/SANDIAC/
HIBLARG

– Heatshield response 
computed with CMA
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Material Thermal 
Response Codes

• Sample Results:

– Hypersonic vehicle 
control fin thermal 
response

– Heating computed 
with HANDI

– Fin thermal response 
computed with the 
ablating version of 
COYOTE

1600
1500
1400
1300
1200
1100
1000
900
800
700
600



Material Thermal 
Response Codes

• Sample Results:  Coupled Ablation / Material Thermal Response
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Nosetip Heating/Ablation

• ABRES Shape Change Code (ASCC86)

– Inviscid flowfield computed with correlations and 
engineering-based approaches

– Heating computed with Momentum/Energy Integral 
Technique (MEIT)

– Steady state and transient conduction options available

– Ablation computed with an equilibrium chemistry model

– Numerous atmospheres and transition models available



Nosetip Heating/Ablation

• ASCC Sample Solution
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RF Attenuation

• Poly-Iterative Reacting Aero-Thermal Evaluation  (PIRATE)
– Performs iterative thermal response analysis until body  surface

temperature convergence is reached over the entire trajectory

– Calls numerous aerothermal codes including:

• TAOS/SIXDOF- Trajectory simulation program

• BLUNTY - Reference boundary layer heating 
(used in iterative process)

• 2IT/SANDIAC/HIBLARG - Reference boundary 
layer heating

• BLIMP - Reacting boundary layer blown
heating

• ACE – Surface chemistry

• CMA - Thermal response

• EMLOSS - Plane wave plasma
interaction



Analysis Tools Currently
Under Development

• Advanced Simulation and  Computing (ASC) 
Codes

– Premo Compressible Fluid Mechanics Code
• Full Navier-Stokes capability
• Unstructured mesh
• Equilibrium and finite-rate chemistry (under development)

– Calore Conduction Code
• Unstructured mesh finite element conduction code
• Aeroheating and ablating boundary conditions (under 

development)

– ASC code architecture will allow communication 
between Premo and Calore for coupled 
aeroheating/material thermal response solutions



Analysis Tools Currently
Under Development

• High Speed Tool for Computing Aeroheating on 
Arbitrary Geometries

– New capability currently under development will couple 
Premo (inviscid solutions) with SAPHIRE (boundary 
layer solutions)

– Coupled set of codes will permit rapid heating solutions 
to be computed on complex, non-spherically-capped 
geometries 



Analysis Tools Currently
Under Development

• Chaleur
– 1-D Material Thermal Response Code

• Planar, Cylindrical, and Spherical 
Geometries

– Q* and Equilibrium Chemistry Ablation 
Models

– Aerodynamic Heating Capability
– In-Depth Decomposition



Analysis Tools Currently
Under Development

• Chaleur (cont.)
– Differences from (Improvements over) CMA

• Residual Formulation of Governing Equations
• Control Volume Finite Element Spatial 

Discretization
• Implicit and Trapezoidal Time Integrators
• Contracting Grid Scheme
• Nonlinear Iteration on Entire Equation Set

– No thermal property or surface recession 
rate lag

• Continuity Equation and Porous Flow 
Momentum Equation

– Predicts pressure in porous char layer



Flight Vehicle
Thermal Instrumentation

• Thermocouple Plugs

• Acoustic Recession Gages

• Photodiode Transition Indicators



Flight Vehicle
Thermocouple Plug

• Typical Thermocouple Plug

– Tungsten-5% Rhenium vs. Tungsten-26% Rhenium 
thermocouples

– Published voltage output values up to 4,660 oR

– Up to three thermocouples per plug



Flight Vehicle
Thermocouple Plug

Typical Plug Design:

Heatshield Material Plug, 0.375 Dia

T/C Hole, 0.0145 Dia, 0.2 Deep

T/C Groove, 0.015 Wide, 0.047 Deep

Enlarged Hole for Wire Junction



Flight Vehicle
Thermocouple Plug

All Dimensions in InchesThermocouple Design:

T/C Junction

Boron Nitride Potting

T/C Wire, 0.0007 Dia

Quartz Double Bore Tubing, 0.003 OD

Tantalum Sheath, 0.008 OD

Ceramic Potting

Compensated Lead Wire



Flight Vehicle
Thermocouple Plug

Installation: Heatshield Material

T/C Plug

Insulation Substructure



Flight Vehicle
Thermocouple Plug

• Sample Flight Data
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Flight Vehicle
Nosetip Recession Gage

• Acoustic Recession Gage

– Used successfully on nosetips, antenna windows, and flaps

– Transducer mounted directly on the back face of the 
ablating material

– Acoustic wave transmitted by the transducer and reflected 
off the ablating surface

– Acoustic “time of flight” used to determine instantaneous 
ablator thickness



Flight Vehicle
Nosetip Recession Gage

Nosetip recession measured acoustically

Ultrasonic Module
On-Board
Processor

Telemetry System & Digitizer

Control Logic
&

Master Clock

Memory
Averaging

& Slow Rate
Write to the DAC

DAC
stretched

waveforms

Analog
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Output for
One

Telemetry
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On-Board Processor for Each Telemetry Channel

To 
Transducer

Group

Pulser/Receivers
Multiplexer &

Digitizer

Transmitted to
Ground Stations

Nosetip



Flight Vehicle
Nosetip Recession Gage

Sample Waveform:

ent the A-scan waveform by
sity modulated line where
re bright and troughs are

A-scan waveform of aft Flap 1

Mainbang & ringdown Thickness echo



Flight Vehicle
Photodiode Transition Indicator

• Photodiode Transition Indicator

– Optical technique for determining boundary layer 
transition

– Photodiode mounted beneath a transparent quartz window

– Voltage across a resistor used as the photodiode “signal”

– Technique would require additional development to be used 
again



Flight Vehicle
Photodiode Transition Indicator

• Photodiode Transition Indicator Hardware



Flight Vehicle
Photodiode Transition Indicator

• Sample Flight Data



Summary

• Sandia has extensive hypersonic 
and reentry vehicle flight testing 
experience

• Analysis capabilities exist which 
cover nearly all aspects of vehicle 
aerothermal performance

• Sandia has developed and worked 
with numerous types of flight 
vehicle instrumentation for measuring 
aerothermal characteristics during flight


