# Vibroacoustic Launch Analysis using VISPERS: Overview and Demonstration

#### Kent Bradford, Jorge Seidel, Jessica Jensen, Marie Boeck

#### Presented to the 2005 Thermal and Fluids Analysis Workshop



# Contents

• VISPERS Overview

# • Expert System

- VISPERS AI Laboratory (VAIL)
- Telemetry Alignment and Consolidation Tool (TACT)

# Time history analysis

- Damage Potential Analysis
- Traditional Maximax Analysis
- Database
- Current Efforts
- Summary



#### **VISPERS** Overview





## **Motivation for VISPERS**

- Reduce the cost of developing vibroacoustic specifications for space systems and components
- Reduce the need for component requalification and vibration isolation
- Captures the knowledge and wisdom of experts in vibroacoustics and shock
- Captures invaluable spacecraft and launch vehicle test and flight data from heritage programs



### **VISPERS Uses**

#### • Design Stage

- External and internal acoustic & vibration predictions
- Test specification development
- Flight Verification
  - Qualification test history and heritage flight data stored in database

#### Post-Flight Data Analysis

- Batch tool reduces time required for flight data processing
- Can easily compare previous flight data from the VISPERS database to new flight data
- Damage Based Analysis can be used for risk assessment

#### Validation

Archived flight data can be used to test and validate new analytical tools and models



Telemetry Clean-Up VAIL and TACT Lead: Jorge Seidel



#### **Telemetry Requires Clean-Up**

• It's a fact: Telemetry data received from spacecraft will have anomalies.

- Data drop-out, Spikes, Saturation, DC-drift, etc.

- Before the data can be processed, the anomalies must be removed.
- VISPERS provides two tools to help the analyst clean-up the waveforms:
  - TACT: alignment and consolidation of common telemetry streams from multiple sources (TDRC)
  - VAIL: A neural-net based anomaly detection and identification tool.







8

- Data from multiple files may not be aligned with respect to a common clock
  - Distance: one mile of range is 6 microseconds offset
  - Clocks: one clock providing the IRIG timestamp may have an offset from another (timestamp applied at TDRC)
  - Clocks: the clock on the spacecraft may drift (timestamp applied at spacecraft).
  - Time-Step: 5000 samples-per-second may not be exactly 5000.0000+ samples-per-second



#### • Tact attempts to align two waveforms:

- Only look at areas of overlap in data time stamps time-codes are "close", within  $\pm$  1 second
- Break the overlap into smaller pieces for processing
- Method 1: Slide one wave past the other to find the minimum sum-of-absolute-differences
- Method 2: Using several filtering techniques, find common points and determine the "best match"
- Method 3: Allow the analyst to specify a point on each waveform, then fine tune with methods 1 and 2



- GOAL: Using AI techniques, identify specific anomalous points and suggest corrective actions to the user.
- METHOD: Simulates a Neural Net where an anomalous point is recognized and highlighted.
- gVail a grid version of Vail that can be run on clusters (Fellowship) or heterogeneous computing grids (like SETI at Home)



## **VAIL – Several Templates**

| Time History Editor - timeHistory_vailTest.csv |                         |                                   |        |       |  |  |
|------------------------------------------------|-------------------------|-----------------------------------|--------|-------|--|--|
| <u>File Edit Sound Vail View Help</u>          |                         |                                   |        |       |  |  |
| a 8 6 1 x 6 🗋 🌔                                | <b>~</b>                | Select Template(s) for Comparison |        | = = × |  |  |
|                                                | Look <u>I</u> n: 🗖 vail | Templates 🔻                       | G 🛱 🗖  |       |  |  |
| 9 0                                            | CVS                     | 🗋 template_all.xml                |        |       |  |  |
| (9) 0<br>-2<br>-11<br>-4<br>-6                 | Clipping.xml            |                                   |        |       |  |  |
| <u>∃</u> _4                                    |                         |                                   |        |       |  |  |
| ₩ -6                                           | sample_template.xml     |                                   |        |       |  |  |
| -8                                             |                         |                                   |        |       |  |  |
|                                                | sample_template2.xml    |                                   |        |       |  |  |
|                                                | Spike.xml               |                                   |        |       |  |  |
|                                                |                         |                                   |        |       |  |  |
| Status:                                        | File <u>N</u> ame:      |                                   |        |       |  |  |
| 0 points between 0.0 and 8.0                   | Files of Type: A        | ll Files                          |        | -     |  |  |
| 10001 points between 0.0 ar                    |                         |                                   | 10.02  |       |  |  |
| P                                              |                         |                                   | Open ( | ancel |  |  |
| Point Editing Model: Previou                   |                         | 7                                 | 0.15   |       |  |  |



- Vail 'looks' at each point in the waveform and the neighborhood around that point.
- Each template is like a neuron
  - If the point looks 'normal', then go on to the next point. This quick look makes VAIL fast
  - If the point does not look normal, then see if the firing threshold of the neuron is reached
  - If the neuron fires, the point is highlighted, and information is passed to display the 'type' of the anomaly and suggested corrective actions.



# VAIL – Finds hidden anomalies



**VISPERS** the vibroacoustic intelligent system for predicting environments, risk, and specifications



#### **Time History Analysis Lead: Jessica Jensen**

**VISPERS** the vibroacoustic intelligent system for predicting environments, risk, and specifications



#### **Use of Damage Potential Analysis**

#### Launch Vehicle

- Traditional maximax algorithm used to evaluate flight data
  - A brief period of strong oscillation can dominate the spectrum and re-qualification may seem necessary
- Damage Potential Analysis takes into account not only the maximum response but also the duration of peak levels (fatigue)
  - Still yields a conservative spectrum
  - May help avoid unnecessary re-qualification of hardware

#### • Spacecraft

- Spacecraft/components tend to be over-tested when qualified on a shaker table for vibration or shock due to the rigidity of the table
- Damage Potential Analysis can provide insight as to whether relief in the specification can be allowed



#### **Damage Potential Analysis Theory**



HE AEROSPACE

17

**VISPERS** the vibroacoustic intelligent system for predicting environments, risk, and specifications

### **Damage Potential Exclusively in VISPERS**







#### **Traditional Processing Now in Batch Format**

- Allows input of flight parameters so that all vibration, shock and acoustic data from a flight can be processed simultaneously
- Significantly cuts down turnaround time for post-flight data analysis
- Can prepare and save model before flight
- Generates a report showing all the time histories and their corresponding vibration, shock, and acoustic environments





#### Batch Data Analysis Tool – User Interface

| VISPERS Batch Data Analysis<br>File Edit Maximax SRS View                                     | Set Maximax and SRS<br>Settings for all files |           |            |                                     | Flight Events Timeline  |                |          |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|------------|-------------------------------------|-------------------------|----------------|----------|--|
| Flight Data                                                                                   |                                               |           |            |                                     | Flight Events           | /              |          |  |
| Name: Titan IV Flight K05 Date: 01/30/2004                                                    |                                               |           |            | Start Time Stop Time Description    | Acoustic Vibration Shoo | k Symbol Color |          |  |
| Description: Testing BDAT                                                                     |                                               |           |            | -2.0 10.0 Liftoff<br>20.0 80.0 TSMQ |                         | <u> </u>       |          |  |
| Comments Flight times/events are Flight Description                                           |                                               |           |            | 119.0 122.0 Engine shut down        |                         |                |          |  |
| Flight times/events are                                                                       | i iigin i                                     | Jeacht    |            |                                     |                         | <b>*</b>       |          |  |
|                                                                                               |                                               |           |            |                                     |                         |                | <b>_</b> |  |
| Ture I finds date                                                                             |                                               |           |            |                                     | Specify Vibr            |                |          |  |
| Time Histories                                                                                |                                               |           |            | 🔤 ar                                | nd Acoustic             | l ime Ir       | itervals |  |
|                                                                                               | ry File Name<br>:k to change)                 | Туре      | Start Time | Sto                                 | Points                  |                |          |  |
| C:\My Documents\\Titan Flight\tiv05                                                           |                                               | Acoustic  | -1.99891   | 125.998                             |                         |                |          |  |
| C:Wy Documents\\Titan Flight\tiv05                                                            | -                                             | Vibration | -1.99891   | 125.998                             | 62 51759 tiv05_9557     |                |          |  |
| C:Wy Documents\\Titan Flight\tiv05                                                            | _9662.bin1                                    | Vibration | -1.99891   | 125.998                             | 62 51759 tiv05_9662     |                |          |  |
| C:\My Documents\\Titan Flight\tiv05                                                           | _9668.bin1                                    | Vibration | -1.99891   | 125.998                             | 62 51759 tiv05_9668     |                |          |  |
|                                                                                               |                                               |           | 1          |                                     |                         |                |          |  |
| Tim                                                                                           | e history                                     | files     |            |                                     |                         |                |          |  |
| Enter Parameters $\longrightarrow$ Click Process $\longrightarrow$ Report (.pdf) is Generated |                                               |           |            |                                     |                         |                |          |  |



#### Database Lead: Marie Boeck



#### **Database Structure**



#### Example Input Screens

| V VISPERS DB Front                |                                               |               | VISPERS DB Front                 | ×                                                |  |
|-----------------------------------|-----------------------------------------------|---------------|----------------------------------|--------------------------------------------------|--|
| File Add Data Other Help          | [                                             |               | File Add Data Other Help         |                                                  |  |
| 🔄 DB Front<br>使── Batch File Data | Transducer                                    |               | 🔄 DB Front<br>⊕– Batch File Data | Time History                                     |  |
| ⊞– <mark>⊡</mark> GUI Data        | Category:                                     | flight        | 🗄 💼 GUI Data                     | Measurement Type: acoustic                       |  |
|                                   | Transducer Type:                              | accelerometer |                                  | Measurement Category: filight                    |  |
|                                   | Transducer Model:                             | 306M68        |                                  | Family: 💿 LV O IFS Titen IVA                     |  |
|                                   | Serial Number:                                | 1542          |                                  | Flight: Titen IVA K-2                            |  |
|                                   | Output Designator #1:                         | <b>▼</b>      |                                  | Measurement Name: 9381                           |  |
|                                   | Output Designator #2:                         | +Y 💌          |                                  | Time History Name: 9381_JD_20_55                 |  |
|                                   | Output Designator #3:                         | +Z            |                                  | Ground Station: Cape Canaveral                   |  |
|                                   | Family: ⊚ Lv O ⊫s                             | Titan IVA     |                                  | Measurement Unit:                                |  |
|                                   | Flight:                                       | Titan IVA K-7 |                                  | Browse Files                                     |  |
|                                   | Location:                                     | 9511-12-13    |                                  | Selected File: /A-02/FMA1_020K_JD_20_55_9381.lis |  |
|                                   |                                               |               |                                  | Start Time: 20.0 End Time: 50.0                  |  |
|                                   | Comments: Titan IVA K-7 9511-12-13 +Z, -X, +Y |               |                                  | Time Unit: s Samples/s:                          |  |
|                                   |                                               |               |                                  | Comments:                                        |  |
|                                   |                                               |               |                                  |                                                  |  |
|                                   |                                               |               |                                  |                                                  |  |
|                                   |                                               |               |                                  |                                                  |  |
|                                   | Add Update                                    | Delete Rename |                                  | Add Update Delete Rename                         |  |
|                                   |                                               |               |                                  |                                                  |  |
| PID = 1229                        |                                               |               | Add Time History                 |                                                  |  |



## **Current Efforts**

#### • Expert System

- Integrate grid-enabled version of VAIL, developed by team of Harvey Mudd College undergraduates
- Create templates for additional anomalies, develop tool for generating templates
- Continue to develop TACT algorithms

### Database

- Schema refinement
- Complete database front end tool
- Continuing Research
  - External liftoff acoustic prediction algorithms



- The VISPERS team has made significant progress in implementing a tool set to
  - Efficiently process multiple time history data streams using both traditional and improved analysis techniques
  - Automatically identify common anomalies in vibration and acoustic time histories
  - Capture vibration, acoustic, and vehicle configuration data for future analysis and comparisons
- Although VISPERS is already quite capable, much remains to be done.



#### Backup



- The analyst can select how to correct the time-stamps when the waves are not aligned
  - 1. Base all times on the "best" T0, and the time step that is specified by the sample rate.
  - 2. Specify the time for any point, and Tact computes the times for all other points based on the time step.
  - 3. Specify the time of any two points and the time step will be adjusted based on those points.
  - 4. Specify the time step and all times will be adjusted based on that time step and the "first" time stamp.

