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Abstract 

 
     The hypersonic shockwave boundary layer-interaction problem was defined with the use of the full Navier-
Stokes (NS) equations and a FORTRAN code was developed to provide numerical solutions to this problem. 
Further, this problem was studied under two specified sets of boundary conditions: adiabatic wall and constant wall 
conditions. The MacCormack Predictor-Corrector technique was used in developing this NS code. To validate the 
numerical code, the flat plate problem was solved, and the results compared to that published in established journals. 
In solving these problems, engineering tools such as, FORTRAN, TECPLOT, and EXCEL, were used to generate 
plots of the primitive variables, such as, the velocity components, u and v, and the temperature T. Selected plots 
were reproduced from various references in validating the work done for the flat plate and hypersonic shockwave 
boundary layer interaction problems. All preliminary results indicated that the code was validated and the results 
obtained were in accordance of the physical behavior of the flow fields. Now that an aerospace engineering tool was 
developed, it is recommended that future designers seek to further its development by making the code user-friendly 
and that they further test accuracy of the code by solving other 2D fluid dynamic problems. 
 

Nomenclature 
 
ρ density 

u velocity in the x-direction 

v velocity in the y-direction 

e energy 

T temperature 

V total velocity 

qx heat transfer in the x-direction 

qy heat transfer in the y-direction 

p pressure 

µ dynamic (absolute) viscosity 

ν kinematic viscosity 

τxx normal shear stress in x direction 

τyy shear stress in the y direction 

τyx  shear stress perpendicular to y plane 

τxy same as τyx 

k thermal conductivity 

Rgas universal gas constant 
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ρ∞  density at freestream conditions 

M∞  Mach Number at freestream conditions 

P∞  pressure at freestream conditions 

a∞           speed of sound at freestream conditions 

u∞ x-component of the velocity at freestream conditions  

v∞  y-component of the velocity at freestream conditions 

T∞  temperature at freestream conditions 

Pr∞  Prandtl number at freestream conditions 

L length of the plate  

γ ratio of cp over cv  

IMAX the number of points in the x-direction 

IMIN the least numbered point in the x-direction 

JMAX the number of points in the y-direction 

JMIN the least numbered point in the y-direction 

∆x incremental change in the x-direction 

∆y incremental change in the y-direction 

∆t incremental change in time 

a speed of sound 

cp specific heat using constant pressure 

cv specific heat using constant volume 

θ  deflection angle 

β wave angle 

i index used to move in the x-direction 

j index used to move in the y-direction 

ybar  normalized y 

Cf  skin friction coefficient 

τw shear stress along the wall 

ji,'ν      maximum value of kinematic viscosity that will be applied in solving the time step 

 Pr         Prandtl number 

 
1.0 Introduction 

 
     The world of aeronautics experienced a great loss in February 2003 when the Space Shuttle Columbia blew up.  
The seven astronauts on board were killed while returning to the Earth�s atmosphere.  Safety issues were a key 
factor in this occurrence.  One of the ways to correct problems of safety in space shuttles is to examine how 
primitive variables such as velocity components u and v, temperature, and density behave. 
     In general, the conservation laws, the conservation of mass, the conservation of momentum, and the conservation 
of energy dictate the behavior of the primitive variables.  These laws, when combined, are known as the Navier-
Stokes (N-S) equations.  These equations are further discussed in the next section and they can be solved either 



 

analytically or numerically.  The numerical solution of the N-S equations for laminar flow over a flat plate is 
discussed in the next section.  However, there are various numerical techniques that can be utilized to solve the N-S 
equations.  Two of these numerical techniques are the Lax-Wendroff Technique and the Crank-Nicholson 
Technique.   
     The Lax-Wendroff Technique is a finite difference scheme that was derived by Lax and Wendroff in 1960, [1].  
It is an explicit scheme suitable for time or space marching solutions.  In other words, the solution process allows for 
the advancement of the primitive variables in either time or space.     
     Crank and Nicholson derived the Crank-Nicholson Technique in 1947.  It is a second order accurate scheme that 
uses trapezoidal differencing.  This particular technique was first used to solve the partial differential heat 
conduction equation.  The researchers studied the development of numerical techniques. However, at the University 
of Maryland at College Park, Adam Grumet and Charles Bollaro [2, 3] conducted research on hypersonic boundary 
layer-shockwave interaction utilizing the MacCormack Technique with certain freestream conditions.  The 
MacCormack Technique is the technique utilized in this paper because of its simplicity and accuracy.   
     A real life example of understanding the importance of hypersonic boundary layer-shockwave interaction would 
be in the designing of a generic hypersonic vehicle powered by a SCRAMjet engine as illustrated in Figure 1.  From 
the study conducted herein, one can understand how velocity and heat transfer are related.  Designers can also 
predict how the SCRAMjet performance might be affected as the vehicle travels in space. 
 

 

Figure 1.   A Hypersonic Vehicle 

 
2.0 Governing Equations 

 
     Solving any problem involving fluid flows involves mechanical engineering relations of the various flow field 
properties such as mass flux, and so forth, at any given point in the flow field.  Designers find the most applicable 
laws to derive these engineering relations to be the conservation laws.  When applied to fully viscous flow, the 
equations are termed the Navier-Stokes equations.  Solution of the N-S equations fully accounts for the effects of 
viscosity in the shear and normal viscous stress terms that show up in both the conservation of momentum and 
conservation of energy equations.                                                                                                                                                                 
      The two-dimensional N-S equations from the laws of mass, momentum (x and y components), and energy in its 
nonconservative differential form for a perfect or ideal gas is as follows: 
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with the viscous stresses involved as follows: 









∂
∂−

∂
∂=

y
v

x
u

xx 2
3
2 µτ        (2a) 








∂
∂−

∂
∂=

x
u

y
v

yy 2
3
2 µτ    (2b) 








∂
∂+

∂
∂==

x
v

y
u

yxxy µττ
3
2       (2c) 

                                                                                         

along with the heat transfer terms that are involved: [6] 
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The N-S equations can be expressed as a single vector equation of the first order using the vectors U, E, and F.  
They can be stated in the following form: 
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where tU ∂∂  is partial derivative of the solution vector with respect to time, invE is the inviscid portion of the flux 
vector in the x direction, visE  the viscous portion of the flux vector in the x direction, invF  is the inviscid portion 
of the flux vector in the y direction, and visF  is the viscous portion of the flux vector in the y direction. The 
arrangement of how these equations were placed in vector form can be found within reference 13.   According to 
Grumet [2], a major reason for utilizing the vector form of the N-S equations is because when a flow goes across a 
shock wave, the flux variables are continuous, while the primitive variables are discontinuous. Another important 
reason why it is better to utilize the vector form instead of the non-vector form because the vector form deals with 
the flux variables like vρ , uvρ , etc. while, on the other hand, the non-vector form deals only in the primitive 
variables, ρ , v, and u.  The non-vector form of equations is in theory valid for flow across a shock. However, when 
it is applied using a numerical technique or scheme, the results that are produced are not correct and yet when the 
vector form of the equations are used going across a shock, the results are solid. 

    
3.0 MacCormack Technique 

 
     From an analytical standpoint, the N-S equations cannot be solved; therefore, various numerical methods must 
be implemented to provide a solution for designers of future spacecrafts. 
     The particular technique of interest to this paper is the MacCormack Technique.  This technique, which came 
into existence in 1969, is second order accurate in both space and time.  It is an explicit, time dependent scheme that 
is capable of solving combined hyperbolic-elliptic flow fields, such as those encountered in supersonic and subsonic 
flow flight regimes. 
     To effectively employ this numerical technique to solve the laminar flow over a flat plate, a numerical two-
dimensional domain must be described and a set of rectangular grids be constructed (see Figure 2).  In the process, 
care should be taken to ensure that the surface of the plate, the freestream, and the other boundary conditions are 
adequately described.  
     Each of the grid points receives from the beginning primitive flow variables, which in turn can be transformed 
into flux variables.  The flow values of each of the flow variables then serve as the initial conditions for this 
MacCormack Technique that marches in time.  In this paper, in order for the flow field to converge properly to a 
steady state solution, the use of uniform freestream conditions will be applied. 
 



 

                           

 
 

Figure 2.  Rectangular Grid Corresponding to Flow over a Flat Plate 
 

 
     Utilizing the initial conditions, the flow field is recalculated at each particular grid point in time steps, ∆t, using 
the Taylor Series expansion: 
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where U(t + ∆t) is the solution vector at a time t + ∆t, U(t) is the original solution at time t, avtU ∂∂   is the average 
partial derivative of the solution vector U with respect to time, and ∆t is the change that is calculated through a 
stability study.  
 

3.1 Calculating avtU ∂∂  
 
     In calculating avtU ∂∂ , the following equation is used: 
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where the average is taken between the partial derivatives of the solution vector with respect to time from both the 
predictor step ( ftU ∂∂ ) and the corrector step ( btU ∂∂ ). This equation is used to gain the steady state solution of 

the flowfield by going on in time, until all the flow variables converge with respect to time. 
 

3.2 Calculating btU ∂∂  and ftU ∂∂  

     MacCormack�s Technique solves the first order Taylor series given in Equation 5 by creatively predicting and 
then correcting the time derivative in a manner that achieves second order accuracy.  The MacCormack Technique, 
broken down in its predictor and corrector nature, is described in the following sections.  In both the predictor and 
corrector steps, the following equation is used to calculate the partial derivative of U with respect to t in utilizing 
both backward and forward differencing: 
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In the predictor step, the use of forward differencing comes into play. Below is the basic forward differencing 
formula that will be used in calculating the derivatives of the E and F vectors [7]: 
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The vectors E and F were evaluated using forward differencing as follows: 
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     In this step, whenever the variable xu ∂∂  is being calculated within the vectors, E and F, (see equation 2(a)), the 
backward differencing was utilized as suggested by Abbott [8].  The backward differencing formula in first order is 
as follows [8]: 
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Whenever the variable yu ∂∂ is being calculated within the vectors, E and F, (see equation 2(c)), the central 
differencing was utilized [8] as follows: 
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     In the corrector step, the use of backward differencing comes into play.  Equation 11 plays the major role in 
solving for the vectors E and F.  These variables were evaluated using backward differencing as follows: 
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 and: 
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     As described earlier, in this step, whenever the variable xu ∂∂  is being calculated within equation 13, the central 
differencing procedure is applied.  Similarly, in this step, whenever the variable yu ∂∂ is being calculated within 
equation 14, the forward differencing, equation 8 is applied.   

 
3.3 Calculating t∆  

 
     The MacCormack Technique is an explicit, numerical technique and as such, it is subjected to stability criteria.  
In this study, a version of the CFL or Courant-Frederichs-Lewy Condition is used to calculate the size of the time 
step for each iterative cycle.  In getting the best value for the time step, a fudge factor K, termed the Courant number 



 

is applied.  This factor is generally in the range of 0.5 and 0.8 and serves to keep the solution stable.  In this paper, a 
value of 0.7 was used. The equations used to compute the time step are as follows: 
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where: 
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and: 

                                                            RTa ji γ=,                                                  (17) 

      It is of interest to note that the t∆  is computed at each grid point.   Once the time study is completed, the 
smallest time step is chosen in accordance with: 
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The implementation of MacCormack Technique within this study can be found in my thesis. 
 

4.0 Problems Solved 
 
     In this study, two problems were solved: the normal flat plate problem that was prescribed by Anderson�s 
Computational Fluid Dynamics and the hypersonic boundary layer/shockwave interaction problem.  In this 
particular section, there are two tables: one with the variables for both cases and the other containing the boundary 
conditions that were applied to both cases. 
 

            Table I. Freestream Conditions for both cases 
 

Parameters Normal Flat Plate 
Hypersonic Boundary Layer 

Shockwave Interaction 
M∞ 4.0 5.0  
a∞ 340.28 340.28 m/s 
P∞ 101325.0 101325.0 Pa 
µ∞ 1.7894e-05 1.7894e-05 kg/(m*s) 
u∞ 1361.12 1361.12 m/s 
Γ 1.4 1.4  

Pr∞ 0.71 0.71  
Rgas 287.0 287.0 J/(kg*K) 
T∞ 288.16 288.16 °K 
v∞ 0.0 0.0 m/s 
Cv 2.5 2.5*Rgas  

Cp 3.5 3.5*Rgas  
Θ 0.0 20 Degrees 

ß 0.0 30 Degrees 



 

 
Table II.  Boundary Conditions for both cases 
  

Conditions Normal Flat Plate Problem Hypersonic Boundary 
Layer Shockwave 

Interaction 
 

Leading Edge 

21.1

0.01,1

0.01,1

0.11,1

∞

∞=

=

=

=

u

TgasR
T

v

u

ρ

 

Same as Flat Plate 

 
Inflow Conditions 

(i = 1, j = 1, JMAX+1) 

2.1

0.0,1

0.1,1

0.1,1

∞

∞
=

=

=

=

u

TgasR
jT

jv
ju
jρ

 

Same as Flat Plate 

 
Surface Constant 

Temperature Conditions 
(i = 1, IMAX+1, j = 1) 

21.

0.01,

0.01,

3,2,*0.21,

∞
=

=

=

−=

u

wallTgasR
iT

iv
iu

iii ρρρ

 

Same as Flat Plate 

 
Surface Adiabatic 

Temperature Conditions 
(i = 1, IMAX+1, j = 1) 

2,1.

0.01,

0.01,

3,2,*0.21,

iTiT
iv
iu
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=

=

=

−= ρρρ

 

Same as Flat Plate 

 
Upper Boundary Conditions 

(i = 1, IMAX+1, 
 j = JMAX) 

2.

0.0,

0.1,

0.1,

∞

∞=

=

=

=

u

TgasR
JMAXiT

JMAXiv
JMAXiu
JMAXiρ

 

Fixed conditions from 
equations 20 - 24 

 
Outflow Conditions 

(i = IMAX, j = 1, JMAX+1) 

jIMAXTjIMAXTjIMAXT
jIMAXvjIMAXvjIMAXv
jIMAXujIMAXujIMAXu
jIMAXjIMAXjIMAX

,2,1*0.2.

,2,1*0.2,

,2,1*0.2,

,2,1*0.2,

−−−=
−−−=
−−−=
−−−= ρρρ

 

Same as Flat Plate 

 
Internal Points 
Initial Guess 

(i = 2, IMAX-1,  
j = 2, JMAX-1) 

2.

0.0,

0.1,

0.1,

∞

∞
=

=

=

=

u

TgasR
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jiv
jiu
jiρ

 

Same as Flat Plate 



 

 
5.0 Hypersonic Boundary Layer/Shockwave Interaction Problem 

 
     In this case, the study is focused on the interaction of a shockwave in a developing boundary layer.  The 
freestream conditions are listed in Table I and its boundary conditions are listed in Table II. The objective of this 
study is the understanding of the boundary layer growth as it interacts with a 30-degree oblique shockwave in a 
Mach 5 flow field.  The goal is to achieve a profile that resembles the predicted results as illustrated in Figure 3. 
 
 

 

Figure 3.  Hypersonic Boundary Layer/Shockwave Interaction 

 
5.1 Calculating the Upper Boundary Conditions  

 
     In solving for the boundary conditions for Case II in the upper flow region, the θ-β-Mach number relationship 
has to come into effect.  In this case, the Mach number is equal to 5.0 and beta is equal to 30 degrees.  Using these 
parameters, theta can be found.  From the beta-theta-Mach number relationship, the theta that is needed for this 
shock is 20 degrees.  The plate length itself needs to be recalculated so that the shock will be as close to the center as 
possible and it is calculated as follows: 
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Equations 20 � 24 were used to calculate the values for the upper flow boundary condition that are shown in Table 
II.  Note, that in solving for the u and v conditions, the values hinge on beta and theta only [12]. 
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6.0 Results 

 
6.1 Code Validation 

 
     In this study, grid independence was used to display the validity of the solver.  The grid independence in this 
study involved the calculation of boundary layer thickness from what is known as �exact�.  The relationship xδ   is 
said to be 5.0 when the value of ∞uu  is 0.99.  In Table 3, notice that at the grid size 70 x 70, the value of this 
relationship is closer than any one of the other grid sizes in question and also has the smallest value of percent error.  
With 70 x 70 being the optimal grid size, it also shows the accuracy of the code. 
 

       Table 3: Dimensionless B. L. Thickness and its Percent Error 
 

Grid Size 
Dimensionless 

b.l. (true) 
Dimensionless 
b.l. (program)

Percent % for b.l. 
Thickness 

30 x 30 5 5.17 3.4 
40 x 40 5 5.13 2.6 
50 x 50 5 5.10 2 
60 x 60 5 5.08 1.6 
70 x 70 5 5.07 1.4 

 
6.2 Results for the Flat Plate Problem 

 
     For the normal flat plate problem, here are graphs that display the code�s accuracy in comparison with the 
problem that was solved in Reference 5.  In Figure 5a, ∞uu  is shown on the x-axis.   It ranges from 0 to 1.0.   The 
y-axis is the normalized y known as ybar. It ranges from 0 to about 25.0.  The other variable of importance outside of 
the ones mentioned in Table I is Reynolds number, with a value of 1000.  This graph is for a constant wall, implying 
that the temperature on the wall is constant, and for an adiabatic wall, which means there is no heat transfer.  The 
shapes of the graphs resemble the normal u curve that falls within the boundary layer.  In Figure 5b, the distance 
across the plate, x, is shown on the x-axis, ranging from 0 to 1.  The y-axis represents the variation of the skin 
friction coefficient, Cf that ranges from 0.02 to 0.17.  The shapes of the graph are hyperbolic and the true and 
experimental curves are similar in respect to their mathematical behavior.  However, the percent error is around 
31.7% in the constant wall case, while in the adiabatic case, the error is around 32%.  
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Figure 5a.  Velocity component u vs. normalized y 
for constant temperature wall conditions and 
adiabatic wall conditions at the trailing edge 

Figure 5b.  Skin friction coefficient vs. x location 
along the plate for constant wall and adiabatic wall 
conditions 



 

 
6.3 Results for the Hypersonic Boundary Layer/Shockwave Interaction Problem  

 
     For the hypersonic boundary layer/shockwave interaction problem, here are some of the contour plots that 
display the code�s accuracy in comparison with the picture that was shown in Figure 3.  The greatest accuracy 
shown takes place in the adiabatic wall condition plots.  In these four figures, the x distance varies from 0.0 to 1.0 
and the y distance varies from 0.0 to 0.3.  Figure 6a depicts a contour plot with the highest distribution of v occurs 
just before the boundary layer/shockwave interaction and once that occurs, v slows down while at the section of the 
plate above the shockwave v stays constant.  Within this plot and that in Figure 6b, there are little lines, which show 
the vector movement of the velocity components u and v within the plate. Once the lines hit the shock, their 
direction changes.  Figure 6b represents a contour plot of v distribution for adiabatic wall conditions in the x-y 
domain and this particular contour plot resembles Figure 3, which displays boundary layer/shockwave interaction.  
The only difference between Figures 6b and 4 is that the flow requires a longer convergence time to form the 
reattachment shock.  Figure 7a depicts a contour plot displaying as the shockwave appears, the value of temperature 
increases and the highest concentration of temperature occur slightly after the shockwave/boundary layer interaction 
forms.  This occurs in a small area.  Figure 7b depicts a contour plot of the value of temperature increases.  The 
highest concentration occurs in close proximity of the plate. After the shockwave/boundary layer interaction takes 
place, the concentration of the temperature increases. 
 

  
Figure 6a.  Velocity component v distribution for 
constant temperature wall conditions 

Figure 6b.  Velocity component v distribution for 
adiabatic wall conditions 

 

  
Figure 7a.  Temperature distribution for constant 
temperature wall conditions 

Figure 7b.  Temperature distribution for adiabatic 
wall conditions 

 
7.0 Conclusion 

 
     In this paper, a FORTRAN code was developed to solve the Navier-Stokes equations and prescribe boundary 
conditions using  the MacCormack Corrector - Predictor Technique. The code was validated, by comparing results 
from the code with published texts.  The results showed that this code is capable of solving the normal flat plate 
problem with prescribed freestream conditions and the boundary layer/shockwave interaction problem.  Contour 
plots were developed in TECPLOT to display the behavior of the primitive variables u, v, temperature, and density 
on the plate.  During each study, the results generated and the actions of the flow fields seem to be consistent. 
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