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ABSTRACT  

Net-shape liquid composite molding (LCM) processes for the manufacturing of composite structures involve the 
permeation of a reactive thermoset polymeric resin through complex, fiber woven preforms. The physical behavior 
during the processing thus involves coupled multi-physics phenomena consisting of mass, thermal and species 
transport. The flow process models based on conservation of mass are solved using conventional Galerkin finite 
element formulations coupled with an implicit fully transient pure finite element methodology. The convective 
nature of the thermal transport models however require the use of Stabilized Upwinding Petrov-Galerkin 
formulations and Peclet number controlled stable thermal time steps. In thin shell aerospace composite 
configurations, the process flow behavior is analyzed through 2.5D thin shell models, with an in-plane flow field 
that is volume averaged across the thickness (2D in-plane flow). The through thickness conduction however is 
predominant in the thermal models and cannot be neglected. Discussions on the scalable computational 
developments and modeling techniques for the coupled 2D-flow/3D-thermal analysis, verifications and validations 
are presented. The paper also discusses high end computing scalable simulation developments, implementations, 
issues, and performance of the coupled flow thermal process modeling and simulations in liquid composite molding 
processes for composite structures employing 2D-Flow/3D-Thermal model configurations.  

INTRODUCTION  

Polymer based composite materials are increasingly used in aerospace and space structures. In aerospace and rotary 
wing structure applications, these tend to be load bearing, large-scale unitized structures. The manufacture of 
unitized aerospace structural composite materials poses significant problems. The strength of these composite 
material structures is due to the directional orientation of the individual fabric layers. Manufacturing techniques 
should ideally preserve this fiber orientation during processing, and with repeatability. Manufacturing techniques 
based on liquid composite molding (LCM) have evolved over the past decade to provide a production oriented 
methodology for structural composite configurations. This manufacturing process allows for repeated production of 
net-shape, load bearing composite structures that maintain and preserve the desired fiber lay-up orientation in a 
production environment. One particular type of LCM process used in the manufacture of aerospace structures is 
resin transfer molding (RTM) and its related variants. The process involves few steps starting with a mold or a tool 
cavity that could be one- or two- sided. This is followed by setting up a dry fiber preform with multiple layers of dry 
woven fabric (normally stitched together) and preforming the dry fabric into a net-shape of the composite structural 
configuration to be manufactured. The net-shape composite preform configuration is placed inside the mold cavity 
conforming to the tool surface. The reactive polymer resin is then injected into the mold cavity where it infiltrates 
and impregnates the dry fiber preform, followed by the consolidation into the net-shape composite structural 
configuration. 
 
Integrated development of composite material structural configurations requires an understanding of the physical 
phenomena during the processing and the associated effect of the induced residual stresses that arise during the 
processing. The LCM process involves the permeation of the reactive thermoset polymeric resin through complex, 
fiber woven preforms. The physical behavior during the processing involves coupled multi-physics phenomena 
consisting of mass, thermal, and species transport. The physical and geometric complexity of the process requires 
coupled multi-physics computational models that need scalable, high performance computing resources. In the case 
of aerospace composite structures the thickness is small compared to the lateral dimensions of the part. Hence, 
process flow models are generally based on a volume averaged velocity field in the thickness directions. The 



process flow modeling and simulations are thus based on two-dimensional thin shell element configurations of the 
composite part based on a 2D in-plane flow field that is volume averaged across the thickness. The thermal 
conduction in the thickness direction during the coupled thermal transport that exists during the flow and 
subsequent consolidation cannot be neglected. The thermal models thus require full 3D models that account for the 
through thickness conduction based on the underlying 2D thin shell models that are used for the flow analysis. This 
paper focuses on the computational developments, modeling techniques and tightly coupled flow-thermal scalable 
software developments for the coupled flow-thermal simulations in LCM.  
 
In this paper, the physical models and computational methodologies for the flow and thermal process behavior are 
briefly discussed. Computational developments and issues in numerical development of 3D thermal model 
configurations from 2D thin shell flow process finite element models are discussed. An illustrative validation of the 
2D-flow and 3D-thermal, scalable parallel developments with available experimental data and prior simulation 
results for the coupled model is presented. Implementation issues and performance of scalable coupled flow-thermal 
simulations are also briefly discussed.   

PHYSICAL PROCESS MODELING IN LCM 

The LCM physical process models involve the analysis of the underlying mass, thermal and species conservation. 
The physical conservation model equations for the flow and thermal conservation in LCM processes is briefly 
described next. 

PROCESS FLOW MODELING 

Resin mass conservation and process flow behavior models address the macroscopic transient resin flow infiltration 
through a complex fiber preform. A transient mass conservation equation coupled with the Darcian flow behavior 
(momentum conservation) in conjunction with a pure finite element methodology is used for tracking the resin 
progression inside a complex mold cavity representing the net-shape composite structural part. The transient mass 
conservation equation1 is given by 
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where, K  is the permeability tensor, µ is the resin viscosity, P is the pressure field, Ψ is a state variable representing 
the infused state of the resin. The permeability tensor is a matrix of order two in most aerospace structures made of 
thin composite preform layers, where the flow velocity is primarily in the in-plane directions (2.5D physics). This 
flow process model based on conservation of resin mass is solved using conventional Galerkin finite element 
formulations coupled with an implicit fully transient pure finite element methodology for tracking the progressing 
flow front based on an Eulerian mesh for the mold cavity. This is briefly described next. 

Pure finite element methodology 

The pure finite element methodology1 is based on the above transient mass conservation equation for the tracking of 
the moving resin front boundary that can present several multiple as well as diverging and converging fronts.. The 
state variable Ψ (0 ≤ Ψ ≤ 1) represents the infused state of a region. Ψ = 0, represents the un-infused regions of the 
dry fiber preform during the transient flow. Ψ = 1, represents the fully infused regions of the dry fiber preform. 
Applying Galerkin weighted residual formulation to the transient mass conservation equation, and introducing the 
finite element approximations for both the state variable Ψ, and the pressure field P, leads to a discretized system of 
equations given by 

           (2) qKPC =+Ψ&

In the above equation, C is the mass matrix representing the pore volume, K is the stiffness matrix associated with 
the pressure field. The time derivative term is discretized using 
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where ∆t is the time step size for the transient problem, and q is the force vector representing the injection 
conditions. The boundary conditions are given by 
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on mold walls,        

     0=P at flow front, and                             

     0PP =  prescribed pressure at inlet       (4)         

      or 
     0qq = prescribed flow rate at inlet, 

where  and  represent prescribed pressure and flow rate at the inlet(s), respectively.  Initially, at time t=0, 0P 0q
     1=Ψ  at the inlet and 

     0=Ψ  elsewhere.                                    (5) 

 
This methodology solves for the state variable defining the infusion state and the associated pressure field iteratively 
until a complete mass conservation is achieved at each step.  

 

The pure finite element methodology briefly described here does not involve the restrictions of the time step 
increments seen in the explicit finite element-control volume2,3 approach for the transient flow progression in this 
free surface flow problem (due to Courant stability considerations of the quasi-steady state approach). The 
methodology is second order accurate in time. It computes the transient flow behavior and position of the resin 
infusion front at each of the discrete time steps selected by the analyst. This leads to significant reductions in the 
computing time required for the process flow modeling and simulations in geometrically large composite aerospace 
structures. The computational advantage demonstrated by this method1 in comparison to the explicit finite element-
control volume technique for process flow modeling simulations in LCM is solely due to the computational 
methodology and the algorithmic solution strategy. This computational effectiveness is independent of the 
computing platform. Large scale process modeling and simulations for several aerospace structural configurations 
that were once impossible even in multi-processor scalable systems are now feasible with this methodology.  

THERMAL TRANSPORT MODELING 

The thermal transient behavior during the process due to the heated resin systems and the exothermic curing 
reactions cannot be neglected during the resin flow infusion. This is further complicated by the changes in viscosity 
due to the change in temperature and degree of cure. The thermoset resin systems also begin to gel with the increase 
in degree of cure. The details of the thermal transport model equations, finite element discretizations following 
reference 6, are presented next. 

Thermal Transport Model 

The thermal transport equations can either be based on two phase models or a local thermal equilibrium model. In 
the two phase model, the energy conservation equations for the resin and the fiber preform are written separately 
with the heat exchange between the two medium taken into account. As discussed in literature, the determination of 
this heat transfer coefficient that is different for each resin and fiber system and depends on the resin flow rate, and 
is quite cumbersome.4, 5, 6

 
In the present coupled flow thermal process modeling and simulation developments, the fiber and resin in the 
infused regions are assumed to be in local thermal equilibrium. The temperature of the resin and the fiber is the 

    



same at any physical location infused with the resin. This is valid when the heat transfer coefficient between the 
resin and the fiber is large and the resin flow is slow4, 6, which is the case in most liquid composite molding 
processes. The local thermal equilibrium transport model is given by 
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where φ is the porosity of the fiber preform. The density ρ, specific heat capacity cp, and the conductivity tensor k 
are weighted average values of these properties for the resin and fiber. This is given by 

   

fr

pffprrp

kkk
ccc

)1(
)1(

ϕϕ
ρϕϕρρ

−+=

−+=       (7) 

The conductivity term can also include thermal dissipation conductivity6, 7 which is difficult to determine and is 
generally neglected in most cases. The convective term in the thermal transport equation is due to the resin flow and 
only involves properties corresponding to the resin. G  is the rate of heat generation from the cure reaction as well 
from other sources. The initial and boundary conditions for the thermal equilibrium equation are given by 
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 Initially at time t=0:   T(t=0) = Tw      (8) 

 
Where Tw is the mold wall temperature, Tr0 is the initial resin temperature, and Tf0 is the initial fiber temperature. 
The condition at the flow front interface is an energy balance within an infinitesimal volume including the interface. 
The energy acquired in the flow front is balanced by the heat into this volume. The adiabatic condition is imposed 
on the other side of the boundary where the flow has not yet reached4. 

Finite Element Discretization of Thermal Transport 

The convective nature of the thermal transport equation requires the use of stabilization techniques through 
streamline up-winding Petrov-Galerkin formulations.8, 9 The finite element discretizations are discussed next. 
 
The introduction of the Petrov-Galerkin formulation in the thermal transport equilibrium equation (6) and invoking 
the Gauss-Green theorem yields 
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The Petrov-Galerkin weight function is denoted by Wi, and finite element shape functions by Ni for the nodal 
temperature values. The boundary thermal flux term is given by 

   nqnTk ⋅−=⋅∇        (10) 

The finite element discrete equation (9) reduces to 
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The discretized system of equations can then be written as 
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The various terms in the above equation are defined by 
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Bw is the spatial derivative of the weighting function, W, and BN is the spatial derivative of the shape function N.  

Stabilization via Streamline Upwinding Petrov Galerkin Method 

The highly advection nature of the thermal energy transport in resin transfer molding simulations require 
stabilization of the numerical solutions to avoid the oscillations seen in such problems invoking traditional Galerkin 
approaches. The standard technique used with such advection problems is the use of some type of upwinding. This 
causes the coefficients in the discretized problem to be heavily weighted in the up-stream direction. This is achieved 
through in the finite element discretization through Petrov-Galerkin formulation where the weighting function is not 
identically equal to the shape function. The streamline upwinding Petrov-Galerkin shape functions used in the 
thermal transport equations is briefly discussed next. 
 
The streamline upwinding Petrov-Galerkin method proposed by Brooks and Hughes9 adds a perturbation to the 
standard Galerkin shape function. This addition minimizes the crosswind diffusion by directing the artificial 
diffusion tensor along the flow stream lines. The perturbed weighting function should be applied to all the terms in 
the thermal transport equation to minimize the artificial diffusion effects. The Petrov-Galerkin weighting function is 
defined as 
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where Ni is the standard Galerkin weighting functions that are continuous across the element boundaries and pi are 
perturbation functions that are discontinuous across the inter-element boundaries. The perturbation pi is defined as 
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The coefficient λ is given by 
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The terms in the equation 16 are given by 
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Thermal Time Discretization 

In addition to the time step increment via the implicit pure finite element method for the flow problem discussed 
earlier, the semi-discrete equations for the thermal problem as discussed earlier have to be solved for each flow time 
step. The advective nature of the thermal transport equations requires the use of thermal stability controlled time 
steps based on the Peclet number. A sub-time stepping strategy in which each flow time step is sub-divided into 
several time steps based on the thermal stability considerations. The discussions on the thermal time discretization 
and the sub-time stepping strategy are presented next. 
 
The commonly used method for solving the semi-discrete thermal transport equation given by equation (12) is the 
trapezoidal θ family of methods. This method uses weighted average of the time derivative at two consecutive time 
steps. Following the discussions in reference 6, the temperature solution at time step (n+1) is given by 
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The value of θ defines four well known numerical time integration schemes. The value of θ = 0 corresponds to 
conditionally stable, first order accurate forward Euler; the value of θ = ½ corresponds to second order accurate, 
unconditionally stable Crank-Nicolson; the value of θ = 2/3 is unconditionally stable, first order accurate Galerkin 
method; θ =1 is unconditionally stable; first order accurate backward Euler method. The sub-time stepping strategy 
employed for the thermal transport is presented next.6 

Sub-Time Stepping Strategy for Thermal and Species Transport 

As discussed earlier, the flow transport equations march forward with a time step size that is defined by the user 
based on the size of the model and the resolution desired in the flow front. The temperature time step on the other 
hand is restricted by the mesh Peclet number and the Courant criterion. A courant number of less than one is needed 
to ensure the stability of the thermal and cure solution. The fill time based on the pure implicit formulation is much 
larger than the stable temperature and cure time step. A multiple sub-time stepping approach is used. At each fill 
time step increment, the critical time step for each element based on the Courant stability condition is determined. 
The smallest of all these critical time steps gives the equivalent time step that is used to determine the sub-time steps 
for the thermal and cure problem. The thermal critical time step is smaller than or equal to the equivalent time step 
and is set to be an integer fraction of the flow time step.6 

    



COUPLED FLOW-THERMAL SCALABLE IMPLEMENTATIONS 

As seen from the theoretical discussions of the physical process models and the numerical methodologies, the 
scalable software developments require a structured software development framework. The discretized linear system 
of equations that form the core of the non-isothermal scalable software developments require the use of optimal 
solvers based on the symmetric or un-symmetric nature of the linear system. While the linear systems for the flow 
process models are symmetric, the thermal and species transport equations are non-symmetric when the convective 
terms are involved. Several linear system solver libraries with applications to scalable computer systems such as 
PETSc, PSPACES, etc., have been developed over the years for the solution of such linear systems10, 11. The 
numerical computations also require the use of basic linear algebra routines and matrix operations that can be 
effectively integrated using the library packages such as BLAS and LAPACK. In addition, the scalable software 
developments also have to be integrated with the graphical libraries and graphical user interfaces for pre- and post- 
processing. Brief discussions of scalable software implementations are discussed next.  
 
As discussed earlier, the interdependent nature of the physical model variables and the use of several external 
libraries for the solution of linear system of equations, graphical user interfaces, and other related libraries, the 
scalable software developments are based on an object-oriented design framework. The interdependencies across 
the physical variables in the process that adds complexity to the non-isothermal scalable computations are shown in 
Figure 1. The scalable software implementations have evolved over the years from the serial versions,1,6 and Fortran 
90 and MPI versions of resin flow infusion12, 13, 14, 15 with the addition of thermal and species transport. The scalable 
implementations build upon the developments and are now based on the Simple Object Oriented Computing 
Environment for the Finite Element Method (SPOOCEFEM)16. This object oriented framework reduces the 
development time for scientific software development, promotes code growth and maturation and improves the code 
coupling capabilities. The scalable software implementation adopts several technologies for the coupled flow-
thermal process modeling computations of transport phenomena in resin transfer molding. The scalable non-
isothermal computations are based on nodal composition of the full problem domain into multiple sub-domains with 
non-overlapping nodes of the domains assigned to each one of the processors. The domain decomposition of the 
computational domain into sub-domains is obtained using graph partitioning techniques using available software 
such as Metis and ParMetis17, 18. The interface elements share nodes that are common to more than one processor. 
This permits the direct use of parallel versions of the linear solver routine library routines from PETSc and 
PSPACES. Earlier implementations based on elemental decompositions required the use of our own multi-processor 
solvers based on iterative algorithms such as pre-conditioned conjugate gradient methods12.  

 
Figure 1: Interdependencies of Problem Variables in Coupled Flow-Thermal Simulations 

2D-FLOW/3D-THERMAL MODELS FOR COUPLED FLOW-THERMAL COMPUTATIONS 

In the case of thin shell composite configurations, the flow process models are based on thin shell finite elements 
with the associated thickness averaged in-plane flow velocity field. The thermal conduction in the through thickness 
directions cannot be neglected. To account for this through thickness thermal conduction, the thermal three-
dimensional elements are built from the original two dimensional shell element configurations6 as shown in figure 2. 
This does not require physically creating the three-dimensional model configurations for the thermal analysis but 

    



building up the additional data structures for the virtual three-dimensional element layers used in the 2D flow/3D 
thermal analysis.  Careful attention is however needed for the nodal numbering and elemental connectivity as this 
impacts the performance and code complexity. The additional thermal nodes and their numbering should preserve 
the connectivity graph of the original finite element nodal mesh configuration. Two numbering schemes for the 
thermal nodes (used in serial implementations) and scalable developments are shown in figure 2. 

    
    (a) Earlier numbering scheme    (b) current numbering scheme 
 (100 nodes in flow model for illustration) 
Figure 2: Stack of Six-Noded Wedge Elements for the 3D Thermal Analysis Built from 2D Flow Thin Shells 

The current numbering scheme shown in figure 2(b) preserves the shape of the nodal connectivity graph. The earlier 
thermal node numbering algorithm (figure 2(a)) does not preserve the nodal connectivity graph. If a Reverse Cuthill 
McKee (RCM)19 pass is performed on the connectivity graph of the resin flow model, this optimization will also be 
maintained for the present thermal node numbering.  Minimization of the connectivity graph bandwidth can lead to 
improvements in runtime and cache efficiency of the non-isothermal computations.13, 14 Further discussions of the 
non-isothermal scalable implementations and developments are presented in references 20, 21 and 22. 
 
The scalable coupled flow-thermal simulations have been ported and tested on several high performance scalable 
computing architectures. The scalable coupled flow-thermal computations and implementations are validated with 
available experimental data. The complexity and the multi-physics and transient progression of the problem do not 
present a potential for any analytical or closed form solutions. Numerical time-temperature history data from 
coupled flow-thermal simulations are verified and validated against available experimental data. One such 
validation based on a non-reactive resin stimulant with a viscosity that varies with temperature is presented next. 
This is followed by the discussions and analysis of scalable non-isothermal computations. 

EXPERIMENTAL VALIDATION 

A rectangular mold cavity that is filled with a continuous random glass fiber preform with a fiber volume fraction of 
9% as presented by Chiu, et. al.23. The experimental mold cavity is of size 21 cm × 7.63 cm × 0.8cm. The mold 
cavity is injected with a non-reactive liquid system (viscosity changes with temperature) at a constant flow rate from 
one end. This problem also provides a validation for the scalable non-isothermal computations under flow rate 
injection conditions that are commonly used in the process. The published experimental details note that the 
temperature of the mold wall is maintained at 63o C with the liquid system injected at 34.5o C. The temperature 
dependent viscosity (with the viscosity expressed in Pa-s) of the non-reactive Palatino oil used in the experiment is 
given by. 
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The physical properties for the simulations employed values as provided in the published references.6, 23 The time-
dependent experimental temperatures (time–temperature response) were obtained using thermocouples positioned 
along the length of the mold cavity and mid-way through the cavity thickness23. The time-dependent nodal 
temperature results at the measured locations (thermocouples located at 0.25L, 0.5L and 0.75L from the inlet and 

    



midway through the cavity thickness) from the scalable coupled flow-thermal computations are compared with the 
published results. 

 
The continuous pumping of the Palatino oil in the experimental set up is simulated by adding a 5 cm run-off area to 
the mold cavity domain in the finite element model. The addition of this run-off area does not affect the predicted 
temperature since the physical problem is highly advective and information downstream of the flow do not get 
relayed back in the calculation of thermal and species transport solutions. One half of the mold cavity thickness is 
modeled with three-dimensional layers of elements in this cavity gap. The temperature – time response of the 
scalable non-isothermal computations from three different computing architectures are shown in figure 3. The 
estimated upper and lower bounds of the experimental data are also shown in these figures along with the numerical 
predictions from single processor computations. The following inferences can be made from these comparisons. At 
each reference location, the temperature was initially at the mold wall temperature. As the cold Palatino oil arrives 
at the reference location, the temperature begins to drop, and within few seconds the temperature at the reference 
location reaches a steady state. As the incoming Palatino oil exchanges heat with the warm fiber preform and heated 
mold, the reference location farthest from the inlet registers a higher steady state temperature than a reference 
location nearest to the inlet with a lowest steady state temperature. The results are in excellent agreement; follow the 
trend of the experimental data and are within the estimated bounds expected in the experimental data. 
  

  
a) SGI b) IBM c) Linux Cluster 

Triangular elements, experiment 2, 5.0 cm. 

  
 

a) SGI b) IBM c) Linux Cluster 
Triangular elements, experiment 2, 15.0 cm. 

Figure 3: Experimental Validation of Temperature-Time Response from Coupled Flow-Thermal Simulations 

SCALABLE PERFORMANCE OF COUPLED FLOW-THERMAL COMPUTATIONS 

The scalable non-isothermal computations show a reduction in computational clock time as number of processors 
that are used is increased for a given problem size. The problem size is defined in terms of the number of nodes and 
elements employed in the finite element model for the scalable non-isothermal computations. Speed-up in scalable 
computations when using multiple processors is generally measured based on computational time on a single 
processor. It is not possible to accommodate a larger problem in a single processor due to the memory limitations. 
Hence a relative speed-up is defined in terms of the computational time from the smallest number of processors that 
can accommodate a given problem. The relative speed up is thus defined as 
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pmin is the smallest number of processors that were used in the computations for a given problem. Tp is the 
computational solution time associated with given number of processors.  
 
The test problem used for the performance analysis of scalable non-isothermal computations is a simple risk 
reduction box geometry shown in figure 4(a). This test case is employed primarily to study the performance of the 
scalable computations and the analysis capabilities of the physics based finite element modeling and scalable non-
isothermal computations for general complex built-up geometries. The finite element model for the non-isothermal 
computations employed 14,715 nodes and 29,144 triangular elements for the 2.5D thin shell flow domain. This 
corresponds to 88,290 nodes and 145,720 six-node wedge elements for the full three-dimensional thermal/cure 
model. The physical properties are taken to be same as the common properties in the field. The temporal resin 
infusion progression from the scalable non-isothermal computations is shown in figure 4(b). The temperature profile 
near to the completion of resin infusion is shown in figure 4(c). The scalable computation results are physically 
consistent. The complete run time for the scalable thermal computations were obtained in three different high 
performance computing architectures (SGI Origin 3900, IBM P-Series 690 and Linux Networx Evolocity cluster) in 
conjunction with computational scientists at Army Research Laboratory. The scalable computations utilized 8, 16, 
32, 64 and 128 processors of these machines using nodal based domain decomposition of the problem domain into 
the same number sub-domains as the number of processors used for the scalable computations.  

   
 (a) Finite Element Model             (b) Temporal Flow Contours   (c) Temperature profile  
         (Near completion of infusion) 

Figure 4: Demonstrative Coupled Flow-Thermal Scalable Process Modeling Simulations 

The relative speed up of the scalable non-isothermal computations for this problem is shown in figure 5.  A careful 
analysis of the relative speed-up shown in figure 5 indicates that the relative speed-up is super-linear in all the 
computational runs on different number of processors. A sub-linear relative speed-up is observed only the case of 
IBM P-690 for 64 processors. An analysis of the computations indicate that majority of the computational time is 
spent in the application of the thermal boundary conditions to each of the thermal nodes corresponding to the  
unfilled (fill factor < 1) nodes in the flow problem domain. The computational time in this thermal boundary 
condition application involves nested loops over the number of nodes. The computational cost involved in the 
application of the thermal conditions from this nested loop is a cubic function of number of nodes as given by 
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The computing cost is of order n3. This bound also holds for the multi-processor runs. The thermal boundary 
conditions are applied over the unfilled nodes assigned to a given processor partition based on nodal domain 
decomposition. For a fixed problem size used in these computations for the relative speed-up, as the number of 
processors (CPUs) employed increases, the number of nodes assigned per processor (CPU) decreases linearly 
{O(n)}. The computational load however decreases non-linearly {O(n3)}. This is reflected in the reduced clock time 
for the computations with increased number of processors and is potentially causing the super-linear speed-up seen 
in this case. 
 

    



The performance of the scalable computations is also influenced by the high performance computing architecture. 
For example, the performance in IBM-P690 shows a sudden drop in performance from 32 to 64 processors. This 
machine is based on heterogeneous memory architecture with shared memory within the computing nodes inside a 
SMP (shared memory processor) box and distributed memory outside each of the SMP boxes. Each SMP box of 
larger systems consist 32 processors. The SMP nature of the IBM system while within the box and distributed 
memory while going outside the box could account for the sudden drop in performance when going from 32 to 64 
processors.   

Figure 5: Scalable Performance of Coupled Flow-Thermal Simulations (Demonstrative Problem in Figure 4) 

CONCLUDING REMARKS 

This paper focused and addressed the computational issues in the coupled flow-thermal scalable process modeling 
and simulations for the manufacture of polymer composite structures via net shape manufacturing processes such as 
the resin transfer molding. The coupled flow-thermal transport phenomena that exist in the liquid composite 
molding processes require effective numerical approaches and techniques for the analysis of the multi-physics 
phenomena. An effective implicit pure finite element methodology for the solution of the transient moving front in 
Eulerian mesh geometries is coupled with stabilized Petrov-Galerkin approaches to computationally model the 
coupled thermal transport that exists and governs the process. The physical and computational complexity of the 
manufacturing process and composite structural configurations manufactured requires the use of high performance 
computing resources and robust techniques for scalable software developments.  Computational issues in the 
scalable implementations for the coupled flow-thermal phenomena are briefly highlighted. An illustrative 
experimental validation of the coupled flow-thermal scalable developments is also presented. Scalable performance 
results and analysis of the coupled flow-thermal developments from three different computing architectures is also 
presented. The present developments have evolved into validated and robust scalable simulation analysis software 
for the coupled flow-thermal process modeling of thin-shell composite structural configurations by resin transfer 
molding.  
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