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Outline

• Overview of ATAC capabilities and methodologies
• Example Cases
• New Capabilities
− Rolling Vehicle Analysis
− TPS Optimization
− Burn through of ablating material layer
− Full trajectory analysis, i.e., exo atmospheric flight
− Particle erosion analysis

• Future Code Enhancements
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ATAC Description

ATAC is an integrated aerodynamic heating/thermal response 
computer code used for a range of applications within the 
aerospace community

− Heatshield and missile TPS design 
− Thermostructural analysis – provides pressure and heating 
boundary conditions to finite element analysis codes
− IR signature analysis
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Background

ATAC is a computer program which models the response 
of a flight vehicle to an aero-heating environment.  The 
essential elements of the code are procedures to model the 
following: 

• Geometry definition
• Freestream properties
• Inviscid flowfield 

- Surface pressure
- Shock shape

• Boundary layer heating
• Material response and ablation
• Change in the geometry of 

the vehicle

Inviscid flow
Boundary layers

Ablation

Shape change

Flight 
dynamics

Particle 
impact
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Background (cont)

Other factors that must be 
considered include: 

• Efficiency
• Robustness
• Accuracy

Inviscid flow
Boundary layers

Ablation

Shape change

Flight 
dynamics

Particle 
impact

Additional options which may be included are:
• Particle impact erosion
• Coupled shape change / flight dynamics
• In-depth thermal response
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Code Capabilities

The Aeroheating and Thermal Analysis Code (ATAC) is a 
state-of-the-art shape change code and includes the 
following models

• Geometry model - bicubic patch
• Freestream properties - 6 environment options and 21 
atmosphere 
models
- 3 DOF trajectory
- Flight
- Wind tunnel
- Ballistic range
- General
- Arc heater
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Code Procedures 

• Inviscid flow
- Streamline tracing - method of steepest descent
- Surface pressure 

• Windward - PANT Correlations, Newtonian
• Leeward - Newtonian, Prandtl-Meyer small disturbance, 

separation correlations
- Shock shape - thin shock layer global mass and 

momentum conservation
• Boundary layer heating - MEIT continuum solution bridged  

with free molecular solution 
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Code Procedures (cont)
• Material response and ablation - Aerotherm surface energy 

balance procedure
• Shape change - multi-dimensional spline fitting for bicubic
patch definition
• Particle impact erosion

- Shock layer interaction - Jaffe, Ranger-Nicholls, Reinecke-
Waldman

- Erosion - generalized G-law, carbon phenolic model, 
tungsten
model

• In-depth thermal response at each nodal point - CMA 1D
conduction with charring/ablation
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Example Shapes Modeled with ATAC

2nd Generation

Apollo

CAV

Mars Science Lab
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Surface Pressure
Windward

• Dahm-Love correlations developed under the PANT 
program
• Newtonian 
• Modified Newtonian using Andrew’s correlation for subsonic 
flight and Vendemia’s model downstream of the tangency 
point

Leeward
• Newtonian, cp = 0
• Prandtl-Meyer small disturbance theory
• Separation correlations 
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Shock Shape
Thin-shock layer integral technique

• Continuity and axial momentum equations in an integral form
• Integrands vary linearly between body and shock
• Equations solved for the shock stand off distance and 
shock angle
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Boundary Layer Model

Momentum Equation
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Boundary Layer Model
Influence Coefficients

Basic laws were developed for incompressible flow along 
an impervious, isothermal flat plate.  Non-ideal effects are 
modeled through the use of influence coefficients
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Ix,y,z includes models for:
• Acceleration (Pressure Gradient)
• Real gas and Mach number
• Blowing
• Surface roughness
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Boundary
Layer
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Initial surface location

Current surface location
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In –Depth Decomposition
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Three-component decomposition model:

Each of the three components decompose following Arrhenius
relationship:

The present code can treat up to 30 decomposing surface 
and backup materials
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Recent Improvements to ATAC

• Rolling Vehicle Analysis
• Burn through of ablating material layer
• TPS Optimization
• Complete trajectory analysis, i.e., exo atmospheric flight
• Particle erosion analysis (code outputs)
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Rolling Vehicle Analysis

• Example case has been conducted to illustrate the 
benefits of rolling on reducing vehicle TPS requirements
• Mach 10 flight at 70,000 ft. altitude for 120 seconds.  
Angle of attack = 5 degrees
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Rolling Vehicle Analysis – Heating Rates

• Even moderate angles of attack significantly increase 
heating conditions and recession levels
• This can result in significant increases in required TPS

Heat flux for 5 deg AOA Heat flux for 10 deg AOA
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Rolling Vehicle Analysis – Recession Levels

• Recession levels almost double for even moderate angles 
of attack
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Roll Rates Effects
• Rolling the vehicle can substantially reduce the worst case recession conditions.  
Requirements are driven to zero AOA levels
• The required roll rate is a function of the total flight time at AOA.  The longer at AOA 
the lower the roll rate requirement
• Determination of the requirements is more complicated for a transient flight 
condition 
• The code is also very useful for lifting body shapes where the vehicle may be rolled 
+ 30 degrees, i.e., a roll position or roll rate can be specified
• Boundary layer transition can further complicate the observed trends
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Burn Through Capability

• Earlier versions of ATAC (and CMA) would stop execution if 
the surface layer were removed

– Moving grid used in surface layer 
– Different surface thermochemistry
– Particularly troublesome for ATAC because of number of 
surface points, i.e., ablate through at any one point stopped 
the calculation

• New capability has been implemented to continue execution 
with subsurface material
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Burn Through Capability
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• Test case with silica 
phenolic covering 
carbon/carbon and 
aluminum 
• Silica phenolic provides 
insulative layer for about 
560 seconds.  
• Carbon/carbon can 
provide adequate 
protection for a some 
period of time, depending 
on structural material used
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TPS Optimization
• New ATAC capability allows for optimization of the TPS layer based on  
thickness requirement (recession) or specified substrate temperature
• Capability is most useful for non axisymmetric shapes 

Initial Thickness Final Thickness
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Complete Trajectory Analysis

OSC
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• Supports IR Signature 
Analysis
• Optical Signature Code 
(OSC) routines used to 
calculate radiant heating 
(exo flight) were 
incorporated into ATAC

ATAC RV Model
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Complete Trajectory Test Case
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Complete Trajectory Analysis - Results

• Exoatmospheric at 148 seconds
• Reenters at 830 seconds 
• Heating conditions are roll averaged

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800 900

Tim e (sec)

Te
m

pe
ra

tu
re

 (R
)

ATAC, Location 1
ATAC, Location 2
ATAC, Location 3
ATAC, Location 4
ATAC, Location 5
BETA/CMA, Location 1
BETA/CMA, Location 2
BETA/CMA, Location 3
BETA/CMA, Location 4
BETA/CMA, Location 5

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900

Time (s)

Q
co

nv
 (B

TU
/ft

2 -s
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Q
ra

d (
B

TU
/ft

2 -s
)

Qconv
Qrad

Heating Environments Surface Temperatures 



Missile Defense Group
Advanced Engineering & SciencesTFAWS 2005 – 28

Particle Erosion Analysis G-Law
• ATAC uses a “G-Law” relationship to determine the amount 

of material removed by particle impact.  “G” is a 
nondimensional parameter, where

G = Mass of material removed/ Incident mass flux

dcb
)(sinVa D  mechG a=

• The amount of mass removed is proportional to the 
impact parameters, particle diameter (D), velocity (V) and 
incidence angle (α)
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Particle Environment

Drop Diameter

Drop distribution 
for 69.85 mm/hr

• ATAC models the environment in 
terms of liquid water content. 
• Liquid water content is converted 
to drop size distribution – various 
distributions are available
• Drop size effects are very 
nonlinear

Rain rate (mm/hr)
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• Drops can break-up and distort as they cross the shock 
• Drop distortion is more significant for smaller drop sizes
• Distortion is greatest aft of the stagnation region
• Drops slow down slightly after crossing the shock

Drop Trajectory Calculations
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• Analysis tool is also used to predict incident mass flux, 
particle sizes, and incident angle.  Extensive ground testing 
is required to develop material models. 

Impact Environment
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Summary
• The ATAC code is continuing to evolve in response to the 
analysis  requirements of developing aerospace systems 
• Additional improvements are currently in process

– Working with C&R to couple with Sinda.  This is part of 
an AF SBIR program. Will also include coupling to CFD 
results for improved inviscid flowfield solution.
– Shock layer radiation
– Improvements to boundary layer transition modeling


