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2008 Lunar Reconnaissance Orbiter (LRO)
Mission Objectives

First Step in the Robotic Lunar Exploration Program

LRO Objectives 

• Characterization of the lunar radiation environment, 
biological impacts, and potential mitigation. Key 
aspects of this objective include determining the 
global radiation environment, investigating the 
capabilities of potential shielding materials, and 
validating deep space radiation prototype hardware 
and software.

• Develop a high resolution global, three dimensional 
geodetic grid of the Moon and provide the 
topography necessary for selecting future landing 
sites.

• Assess in detail the resources and environments of 
the Moon’s polar regions.

• High spatial resolution assessment of the Moon’s 
surface addressing elemental composition, 
mineralogy, and Regolith characteristics
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Historical Perspective
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Historical Perspective (con’t)

• Existing Data Sets
– Earth Based Telescopes
– Ranger
– Surveyor
– Lunar Orbiter
– Apollo Photography & Laser Altimetry
– Earth Based Radar
– Clementine Imaging, Gravity, & Topography
– Lunar Prospector Elemental Maps
– Soviet Data

• What is missing?
– Uniform global geodetic model (topography, gravity, 

position)
– Uniform global high resolution, high fidelity (color) 

mineralogical/compositional data
– Uniform global high resolution morphology
– Very high resolution (sub-meter) imaging outside of 

Apollo targets
– Uniform global regolith characterization
– Knowledge of interior of polar shadowed craters

Mars MOLA Geodetic Model

Apollo Metric Camera Coverage
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LRO Mission Overview
Science and Exploration Objectives

Develop an understanding of the 
Moon in support of human 
exploration (hazards, topography, 
navigation, environs)

Understand the current state and 
evolution of the volatiles (ice) 
and other resources in context

Biological adaptation to 
lunar environment 
(radiation, gravitation, dust...)
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LRO Mission Overview (con’t)
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entire Moon at 100m 
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navigation (3D)
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LRO Addresses National Academy Science Priorities for the Moon (NRC Decadal, 2002)

Suite of Six Science Instruments
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LRO Mission Overview (con’t)
Flight Plan – Direct using 3-Stage ELV

• Launch on a Delta II class rocket into a direct insertion trajectory to the moon.
• On-board propulsion system used to capture at the moon, insert into and 

maintain 50 km altitude circular polar reconnaissance orbit.
• 1 year mission
• Orbiter is a 3-axis stabilized, nadir pointed spacecraft designed to operate 

continuously during the primary mission.
• LRO is designed to be capable of performing an extended mission of up to 4 

additional years in a low maintenance orbit.
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LRO Mission Timeline

• Feb. 2004 – Jun. 2004 PIP
• Jun. 2004 – Oct. 2004 Program Review of AO Proposals
• Oct. 2004 – Dec. 2004 AO Selection
• Jan. 2005 – May 2005 Instrument Kickoff and Accommodations Review
• May 2005 – Oct. 2005 PDR
• Oct. 2005 – Jul. 2006 CDR
• Jul. 2006 – Jul. 2007 Start of I&T
• Jul. 2007 – Nov. 2007 PER
• Nov. 2007 – Jul. 2008   Environmental Testing and PSR
• Jul. 2008 – Sep. 2008 Launch site Preps and Launch
• Sep. 2008 – Nov. 2008 LRO Commissioning and Start of Science
• Nov. 2008 – Jan. 2010 50 ± 20 km Science Mission
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Rapidly Evolving Spacecraft Concept

Ultra-Flex 
Solar Array

High Gain Antenna Instrument Deck

Major Design Issues:
•Bi-prop versus mono-prop, & mono-prop with 1, 2, or 3 tanks, tanks inside or protruding?
•Spacecraft packaging inside or “inside out” configuration?
•All instruments on the optics deck or some located elsewhere?
•Separate avionics and propulsion modules or integrated?
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Current Spacecraft Concept

Solid Works Model TSS Geometry Model

X (Thrust)

Y

Z (Nadir)

RWAs

PROP
TANK

LROC

CRaTER

Diviner

LEND

LOLA

LAMP
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Lunar Thermal Environment

LUNAR NIGHT
354 Hours without Sun

Min. Surface Temp. is -280F (-173C, 100K)

LUNAR DAY
354 Hours with Sun

Max. Surface Temp. is 250F (121C, 395K)

The lunar thermal environment is more severe than LEO, GEO, and Mars.
It resembles the harsh Mercury environment.

Avg. Temp. of Lunar Surface over
the course of 1 Earth Month
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Lunar Thermal Environment (con’t)

Lunar Orbit Environment Parameters

Lunar IR Emission as a Function of Beta Angle

where: 
q”IR = IR flux from Lunar surface
C1 = peak flux at subsolar point
C2 = minimum flux emitted from 

shaded Lunar surface
β = Beta angle
θ = Angle from subsolar point

q”IR = [(C1-C2)*cos(β)*cos(θ)] + C2

126812261320IR Max. [W/m2] 
(subsolar peak)

0.0730.060.13Albedo

5.25.25.2IR Min. [W/m2] 
(dark side)

136812801420 Direct Solar [W/m2] 

NomColdHot 

126812261320IR Max. [W/m2] 
(subsolar peak)

0.0730.060.13Albedo

5.25.25.2IR Min. [W/m2] 
(dark side)

136812801420 Direct Solar [W/m2] 

NomColdHot 
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LRO Bounding Thermal Cases:

LRO Thermal Design Challenges

Beta 0o

Beta 90o

Type Lunar Circular
Altitude 50±20km
Inclination 90° (polar orbit)
Orbit Period 113 minutes
Full Sun Orbits Beta 90.0° to 76.4° (55 days/yr)
Eclipsed Orbits Beta 76.4° to 0.0° (310 days/yr)
Max. Eclipse 48 minutes (beta 0°)

LRO Orbit Parameters:

Beta 0° is the Hot Op Case
• Most severe IR loading
• Zenith facing radiators flip through sun
• Instrument apertures “see” sun near dawn 

and dusk 74°off bore site at 70 km
Beta 90° is the Cold Op Case
• Zenith facing radiators look at deep space
• Minimal IR loading
-Y Sun Pointing Safehold Attitude
• Zenith facing radiators can be edge on to the moon
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LRO Thermal Design Challenges (con’t)

• Class C mission “single string” design for components
– Cost, size, power, and mass constraints drive the thermal design to be a 

passive thermal design challenge is that the lunar thermal environment is 
NOT benign

• Radiator placement severely limited
– Nadir pointing surfaces have too high of an IR loading to function as a 

radiator, especially at low Beta angles
– Ram and wake surfaces also experience high IR loading at low Beta 

angles, combined with UV loading
– Zenith surfaces are logical radiator locations, however, they also have a 

view of an atypically hot solar array
• Solar array thermal design 

– Must take into consideration that the front side will have solar heating while 
at the same time the backside will receive lunar IR nearly equivalent to the 
solar flux in the worst hot operational case
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LRO Thermal Design Challenges (con’t)

• Instrument optical bench is its own radiator
– Instrument thermal control, in general, is achieved thru isolation from the 

lunar environment and by using passive means to conduct heat to a zenith 
radiator; note, however, some instruments require conductive isolation from 
optical bench, whereas some require conductive coupling to bench

– Heaters on nadir facesheet at instrument interfaces are linearly coupled to a 
zenith facesheet which has a view to space makes it difficult to minimize 
heater power in the worst case cold thermal conditions 

– Since optical bench size also has to be minimized due to mass constraints, 
it’s difficult to minimize thermal gradients and meet stability requirements

• Thermal coatings requirements on instruments
– Thermal design challenge for those instruments that require high emittance

coatings (i.e., DIVINER) which also have direct and continuous views to the 
lunar surface

– Several instruments with views to the sun have specularity requirements that 
limit the use of solar reflective coatings
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LRO Thermal Design Challenges (con’t)

LROC 

CRaTER 

LAMP 

LOLA DIVINER

Temperature Gradients on the Optical Bench Nadir Facesheet

Extreme temperature swing during operational cases as 
spacecraft travels from sun side to dark side of the moon
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LRO Thermal Design Challenges (con’t)

• Critical understanding of heater power profile as a function of beta angle for 
power margin verification is required early on

Heater Power vs. Beta Angle
for LEO and LRO Missions
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Lessons Learned from Early Modeling

• Identified sensitivities
– Thermal performance of instruments is very sensitive to the linear coupling 

from the instrument optical bench to the spacecraft
– Thermal masses of instruments must also be modeled correctly

• Discovered potential “cross talk” between optical bench heaters that are 
in proximity to one another

• Instrument designs are highly dependent upon understanding the heat 
flow across the interface between the optical bench and each instrument

• Thermal control on the instrument optical bench is most effective when 
the instruments are conductively isolated from the bench, but since LRO 
forced to take a different approach, modeling required to optimize 
location of instruments on bench

• In order to minimize heater power for battery (has strictest temperature 
limits of all avionics), it should be placed on the zenith radiator which 
has a direct view to solar array in Beta 90 case
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Beyond LRO?

Some options…

Beyond LRO?
Exploration of a 
potential resource:
Validation of water ice
and in situ biological
sentinel experiments?

Beyond LRO?:
Follow-on to LRO, 
filling key gaps, 
including regolith 
characterization in 
3D, far-side gravity, 
landing site hazards, 
Telecomm. 
infrastructure?

Beyond LRO? Potential lunar
experiment returns and demos?
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Conclusions

• LRO seeks to answer many pressing questions about the moon in 
preparation for future manned missions

• LRO has an aggressive schedule in order to meet the 2008 launch date
• The Lunar thermal environment is as severe as Mercury and it poses 

many design challenges that typical LEO and interplanetary missions 
don’t need to address

• Numerous instruments with different requirements for coupling to an 
optical bench that functions as its own radiator poses a difficult thermal 
problem that requires careful analysis

• Early thermal analysis has been extensive and strives to keep pace with 
a rapidly evolving mechanical design 

• Stay tuned for PDR analysis and design effort!
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