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ABSTRACT 

     In this paper, waverider configurations are generated by specifying an arbitrary conical 
shockwave shape, and a corresponding leading edge. This inverse design approach makes use of 
a numerical tool which is based on a semi-analytical approach for solving the Euler equations. In 
the waverider design space, the aerodynamic figure of merit, (L/D) is considered a function of 
the shapes of both the conical shockwaves and leading edges. The waverider configuration and 
aerodynamic performance are considered functions of eight design parameters. The method 
yields practical vehicle shapes with acceptable volumetric efficiencies. The design method is 
computationally efficient and permits rapid parametric studies. Several viscous optimized 
waverider configurations were constructed and their aero performance analyzed. Results show 
that the waveriders created have acceptable L/D when compared to the Kuchemann Barrier, at 
times crossing it. 

NOMENCLATURE 
ß               =    shockwave angle 
CD = skin friction coefficient 
CL = pressure coefficient 
D = Drag, force component parallel to the freestream velocity 
L = Lift, force component perpendicular to the freestream velocity 
L/D   =   Lift over drag ratio 
M = Mach number 
θ = wedge angle 
p = pressure 
q∞ =    freestream dynamic pressure 
S = Surface area 
τ = shear stress 
T = temperature 
Veff = volumetric efficiency 
 

I. INTRODUCTION 
 
     A basic feature of all in-flight hypersonic vehicles is the creation of relatively strong 
shockwaves emanating from their leading edges.  Associated with the flowfields behind these 
shockwaves are severe aerothermodynamics, propulsion system integration and aeroelastic 
design problems.  This feature is characteristic of both ballistic and lifting vehicles, so in either 
case the relationship between shockwave shape and vehicle shape is of fundamental importance 
to effective vehicle design. After a thorough review of flight vehicle performance over a range of 
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Mach numbers, Kuchemann established an L/D barrier and the associated aircraft configurations 
that perform best with this barrier, Ref. 1. Kuchemann demonstrated in Figure 1 that at high 
Mach numbers in order to maximize aircraft performance, blended body configurations with 
tightly integrated forebodies, propulsion and nozzle afterbodies are favored. Later, Bowcutt, Ref. 
2 showed not only that waverider configurations supported the Kuchemann findings, but that 
viscous optimized waverider configurations can potentially out-perform the blended body 
aircraft configurations and thus break the ‘L/D barrier’ Kuchemann established. Bowcutt’s 
findings were later supported by others, Refs. 3 & 4 as demonstrated in the illustration depicted 
in Figure 2. 
 

 

 

Figure 1: Influence of Flight Mach number 
and Performance on Aircraft Shape 

Figure 2: The Kuchemann “L/D barrier”     
and Waverider Performance 

 
     Further, the goal of this paper seeks to develop a design methodology for the creation of 
waverider configurations, and identify the engineering parameters that influence their 
aerothermodynamic performance and to provide an answer to the following problem: a 
supersonic flow interacts with a shockwave and it is required that a numerical process be defined 
to construct the geometric shapes or waveriders that support the generating shockwave.  
     From a fluid dynamic point of view, this study is concerned with the creation of a class of 
hypersonic vehicle configurations with superior performance that satisfies the coupled Euler 
equations and their appropriate boundary conditions for a predetermined flight altitude, flight 
speed and vehicle dimension. Once an appropriate class hypersonic vehicle configuration is 
determined, engineering design parameters are sought, identified and manipulated in a manner 
that improves the overall efficiency of the resulting waverider. 
 
 

II. DESIGN METHODOLOGY 
 

     The design process described in this research is based on the work done in Refs. 5-7, and 
which is built on the following two axioms: First, two imaginary streamlines are assumed to 
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emanate from each point on the shock surface. One represents a freestream streamline that is 
processed by the shock and another, which remains undisturbed, as shown in Figure 3. Any 
curve described on the generating shockwave will be called a leading edge. Each leading edge 
generates an upper freestream surface and a lower compression surface.  
     Secondly, the inviscid surfaces are replaced by a solid wall without any interference to the 
outer flowfield. Using these axioms, the generation of a particular configuration becomes a 
matter of choosing appropriate leading edges on an assumed shockwave surface. The waverider 
design process is illustrated in Figure 3. It is of interest to note that in constructing waveriders 
the choice of leading edges is of utmost importance. As illustrated in Figure 3, a choice of one 
leading edge will result in a wedge, whereas another leading edge on the very same shockwave 
will result in a caret waverider and a third results in a generic waverider.  
 

 
Figure 3: Illustration of Waverider Construction from Oblique Shockwaves 

 
II. A. FLOWFIELD GENERATION 
 
     An integral part of the waverider design is the flowfield information behind a shockwave of 
interest, as the waverider is a product of its environment. The methodology developed in Refs. 5-
7 is used to generate, conical, hypersonic flowfields from which waveriders are carved and this 
design method is applicable to two-dimensional, axisymmetric and generalized three-
dimensional flowfields. In an effort to describe this tool without undue complexity, a complete 
analysis is given here of the flowfield generated by an arbitrary axisymmetric shock shape.  

 
     In the following three sections, all numerical processes will be described in a cylindrical 
coordinate frame of reference, namely, x, r and φ, where the x axis is aligned with the free stream 
velocity vector.  The flow variables are the properties of the flowfield, namely u, v, p and 
ρ, where ρ is the density, u and v the cylindrical velocity components in the x and r directions 
respectively, and p the pressure. 
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II. B. HYPERSONIC FLOWFIELD CONSTRUCTION 
 
     Given the Mach number and altitude, the freestream properties are known.  The arbitrary 
shockwave shape is described in the form: 
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and defined in the interval (a, b), where δx = (b - a)/N. Each point numbered j; for j = 1, N + 1 
and i = 1, represents the beginning of a streamline on the shockwave. In addition, a line 
described by i, for i = const, will be called a data line. The flow variables and their respective 
partial derivatives at each point on a given data line must be found.  This information is used in a 
Taylor series expansion to predict the flow parameters on a new data line some distance dx and 
dr downstream in the flowfield. However, the increments, dx and δx, represent two different 
intervals, the first being an increment in the development of the flowfield and the second, an 
increment along the shockwave. In this study, dx is chosen to be half of δx. 
     The first data line, along which the flowfield information is known, is immediately after the 
shockwave, and can be represented by the shockwave itself for the sake of simplification. The 
objective of the numerical process thereafter is to develop a new data line some distance dx and 
dr downstream. In general, the increment, dx, may be chosen as a constant value through out the 
flowfield.  However, the increment, dr, must be calculated at each grid point. The new flowfield 
parameters: u, v, p and ρ are evaluated as per the Taylor Series expansion formulation as follows 
using m to represent any flowfield parameter: 
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Similarly, the new grid point locations are evaluated as follows: 
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The values for dr used in equations 3 are evaluated as follows: 
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The data illustrated in equations 2 and 3 represents a new data line along which all the flowfield 
parameters are known. However, this line is developed from a forward marching technique and 
therefore has one less data point, as shown in Figure 4. 
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Figure 4: Creating Next Data Point 

 
     The next challenge is the development of the partial derivatives, 
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, used in the evaluation of the updated flow variables 
defined in equations 2.  The Euler equations, described in the form, 
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where equations 5 – 8 are the continuity, x momentum, y momentum, and energy equations 
respectively. These equations are coupled to the directional derivatives of the flow parameters 
along a given data line, in the form, 
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that represents a closed set of algebraic equations of eight equations and eight unknowns relative 

to the eight partial derivatives, x
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are coupled into a linear algebraic equation matrix Ax=B, where: 
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where matrix A represents the portion that includes both Euler’s equations and the directional 
derivatives, 
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where matrix x is the unknown matrix, 
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and matrix B is the product of matrix A times matrix x. This is solved analytically using 
Mathematica, Ref. 8 to yield the following solutions, 
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where the index k, k = 1, 8 and represents the following eight partial derivatives, 
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     The new data line will be described by i = 2, along which j ranges from 1 through N. This 
data line becomes the initial data line for j; j = 1, N+1-i and i = i+1. The numerical process is 
then repeated until i = N+1. Figure 5 shows the triangular grid system developed in this process. 
 
II. C. FLOWFIELD CALCULATIONS 
 
     With the Mach number, altitude, 
freestream quantities, and shockwave shape 
prescribed, the local shockwave relations, 
described in Ref. 9, are used to evaluate the 
flow variables across the shockwave and on 
each point on the first data line, i =1, and j 
=1, N+1.  Using the approach explained in 
section 2.1, the partial derivatives of the 
flowfield variables, namely; 

x
p

xx
v

x
u

r
p

rr
v

r
u

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ and,,,,,,, ρρ  are 

evaluated on each point on the data line, i 
=1, and j =1, N using the expressions, 
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Because the directional derivatives require 
information from two points on the data line, 
it is possible only to obtain the derivatives 
for j = 1, N.  Thus, the second data line will 
be one point shorter than the first. 
 

 
Figure 5: Triangular Grid 
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     Next, the flowfield parameters are 
evaluated at the next set of grid points on the 
new data line, i.e., i = 2, j = 1, N, through 
the use of the Taylor series expansion, 
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where the function,ϕ , represents any one of 
the flowfield variables, mainly u, v, ρ and p. 
It is of interest to note that once the new 
flowfield variables are evaluated, the 
physical location of the grid points may be 
updated as follows: 
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This process is repeated for the remaining 
data lines (i = 3, N+1) as well, with each 
one being one point shorter than the one 
before it, which leads to the triangular shape 
of the grid in Figure 5.  With this numerical 
approach, a particular streamline is traced by 
holding the index, j, fixed and the index, i, 
varied, such that, i = 1, N+1-j, as shown in 
Figure 5. 

 
II. D. LOCAL SKIN FRICTION COEFFICIENT AND SHEAR STRESS CALCULATIONS 
 
     The skin friction coefficient distribution along the streamlines that form the waverider 
configuration is evaluated using the reference temperature method, Ref. 4.  For laminar flow, the 
local skin friction is given by: 
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where Res is the local Reynolds number as defined as: 
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where v ∞, µ ∞ and ρ ∞ are freestream quantities and s is the local distance measured from the 
leading edge.  The reference temperature T’ is calculated as follows: 
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where M ∞ is the freestream Mach number and Tw is the wall temperature.  The exponent ω used 
in equation 20 is the exponent in the approximate viscosity variation relationship, namely, 
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In this research, the value of ω was set to 0.75.  In the case of turbulent flow, the local skin 
friction is evaluated in accordance with the relationship given as: 
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The quantities ρ’ and µ’ are evaluated at the reference temperature defined in equation 22.  The 
local shear stress is found to be a function of the skin friction coefficient and is calculated with 
this equation: 

Ef qC *=τ                                                               (26) 
 
where qE is the dynamic pressure at the edge, defined by: 
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2
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     The effects of boundary layer transition on the skin friction coefficient and the shear stress are 
shown by Figure 9.  Boundary layer transition is predicted using the correlation given by 
Bowcutt, Ref. 2. This relationship is expressed as a function of the edge Mach number, Me in the 
following manner: 

( )641.2410209.1exp421.6Relog es M−×=                           (28) 
 
where Res is the transition Reynolds Number.  In this research, the transition region was not 
considered, simplifying into a transition point. 
 
II. E. LOCAL HEAT TRANSFER EVALUATIONS 
 
     It has been well established that for hypersonic, two-dimensional, zero pressure gradient, 
laminar boundary layers; the intermediate enthalpy method provides a good method of 
prediction. However, the experimental work done by East and Baxter, Ref. 10 was instead used 
to evaluate the local heat transfer rate on the solid streamlines. The local heat transfer rate, wq&  for 
laminar boundary layers is evaluated using a correlation, Ref. 11 between the Stanton number St’ 
and Reynolds number Re’ given as: 
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Figure 6: Boundary Layer Transition 

 
     For turbulent boundary layers, the heat transfer rate was calculated using the relationship 
given by Wieghardt, Ref. 10, as follows: 

( ) 45.2
10 eRlog176.0 −′=′ stS                                                 (31) 

 
The numerical value used for Pr is 0.71 for laminar flow. 
 
 

III. SHAPE GENERATION 
 

 Now that the flowfield is constructed and the streamlines extracted, a three-dimensional 
waverider can now be created.  In order to create a three-dimensional waverider from a two-
dimensional flowfield, a third dimension, or Z, must be added.  Any shape can be created with 
the appropriate set of Z-coordinates.  In the case of an axisymmetric flowfield, the coordinates 
are found with the use of the waverider shape angle, jφ .  With the x and r coordinates from the 
flowfield, the shape angle can be used to create any number of different shapes. 
 
III. A. WAVERIDER SHAPE ANGLE 
 

The shape of the waverider is defined in cylindrical coordinates, x, r, and jφ , where the x-
axis is along the waverider’s length.  In order to make the shape three-dimensional, the r 
coordinates need to be rotated by the angle jφ .  The shape angle, jφ  is defined by choosing a base 
plane curve, as shown in Figure 7, with j = 1, N +1.  Once a base curve is chosen and a set of 
shape angles found, the waverider shape is carved from the conical flowfield, as shown in 
Figures 8 and 9. 
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Figure 7: Base Plane Figure 8: Conical Flowfield and Base Curve 

 
 

 
Figure 9: Completed Waverider Forebody 

 
 

III. B. WAVERIDER EXAMPLES 
 
 In this study, twenty-three different waverider shapes were created.  Each one used the 
same x and r coordinates.  However, each had its own unique set of shape angles.  Two of them, 
a flat top waverider and a flat bottom waverider, are offered as examples.  All twenty-three 
shapes, and their data, can be found in the Appendix. 
 
 In order to create a flat top waverider (Figure 10), the base curve would be described by a 
set of shape angles defined by: 
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Similarly, a flat bottom waverider (Figure 11) may be described by the expression, 
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Figure 10: Flat Top Waverider Figure 11: Flat Bottom Waverider 
 
 The flow variables and viscous properties found before are independent from the actual 
shape of the waverider.  However, they are indeed the properties found along the upper and 
lower surfaces of the waverider.  Figure 12 shows the density distribution along the lower 
surface of a flat top waverider (inverted as to give a better view of the lower surface).  Also, it 
shows a slice of the flowfield along the middle, and another slice at the base to show that the 
density distribution of the flowfield matches that on the lower surface. 
 

 
Figure 12: Density Distribution along Lower Surface of Flat Top Waverider 

 
 

IV. AERODYNAMIC ANALYSIS 
 

 With the waverider shape completed, it is possible to perform an aerodynamic analysis.  
It being an aircraft, it is very important to determine its aerodynamic properties such as lift and 
drag.  Such an analysis is possible due to the waverider simulation using actual dimensions for 
the coordinates.  Aerodynamic forces and moments are calculated by numerically integrating the 
local pressures and shear stresses acting on the waverider wetted surfaces. The mean value 
theorem is used to evaluate all surface integration routines. 
 
IV. A. THE MEAN VALUE THEOREM 
 
 The evaluation of the inviscid force on a given waverider configuration involves the 
evaluation of the following expressions as they are applied to the upper and lower waverider 
surfaces, 
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where Dp, Lp, and Sp are the Lift, Drag, and Slip forces due to pressure and dS is defined as: 
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with Sx, Sy, and Sz being the area projections onto the yz, xz, and xy planes respectively, as 
shown in Figure 13. 
 

 
Figure 13: Projected Areas 

 
Similarly, the force due to shear stress is evaluated with the following expressions, 
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Using the mean value theorem, equations 34, 36, and 37 become: 
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IV. B. PROJECTED AND WETTED AREAS 
 
 In order to evaluate equation 37, first the area projections must be calculated.  The 
waverider shapes are often not shapes of which the area can be easily taken.  Therefore the 
Triangulation Method is used.  With the Triangulation Method, the surface of the waverider is 
divided into many triangle-shaped elements.  Figure 14 shows a single element ABC. 
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Figure 14: Example Element 

 
The sides of the element are calculated as follows: 
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where mλ equals 1 or 0 if the projection is in the m direction.  The projected area is calculated 
with these expressions: 
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 For the average shear stress calculations, the wetted areas can also be calculated with 
equations 40 and 41, keeping λ = 1. 
 
IV. C. AVERAGE PRESSURE AND SHEAR STRESS 
 
 The final unknowns in equations 39 are the average pressure and average shear stress.  
The average pressure is simply calculated as: 
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In order to calculate the average shear stress, a triangular element is once again used (see 

Figure 14).  First, the average force due to shear stress on each element is calculated in the 
following manner: 
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where A is the wetted area of the element.  Then, the average shear stress is calculated 
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IV. D. LIFT, DRAG, AND SIDE FORCES 
 
 Each variable in equations 39 are now known and thus the forces on the waverider can be 
evaluated.  Keeping in mind that the Lift is the j component, the Drag the i component, these 
forces are evaluated as: 
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where APlan is the plan form area, ABase is the base area, and ABase_View and APlan_View are the 
projections of the base and planform areas.  The Side Force is neglected due to the symmetrical 
design of the waverider, which causes the Side Forces to cancel each other out.  Other 
aerodynamic properties are found with these equations: 
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V. CODE VALIDATION AND RESULTS 
 

V. A.     CODE VALIDATION 
 
     In order for the results of a code to be meaningful, they have to be validated.  Otherwise, the 
results are a group of meaningless numbers.  To validate this code, the results are compared to 
two other waverider generation codes developed by the University of Maryland (UMD) and Dr. 
Ferguson (Old Code), Ref. 7 with a Mach number of 6, waverider length of 1 m, and shockwave 
angle of 16° for a Flat Top Waverider at sea level in Table 1. 
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Table 1. Comparison of Code to Previous Codes 
 

UMD Old Code New Code % Error
Geometric Properties

Base Height/Length 0.1734 0.1800 0.1737 -1.7068
Semi-span/Length 0.4968 0.4969 0.4887 -1.6381

Volumetric Efficiency 0.1868 0.1967 0.2015 5.0691
Base Area (m2) 0.1050 0.1117 0.1054 -2.7365

Planform Area (m2) 0.6158 0.6155 0.6038 -1.9258
Total Wetted Area (m2) 1.2679 1.2717 1.2458 -1.8901

Volume (m3) 0.0390 0.0421 0.0424 4.6303
Aerodynamic Properties

CD 0.0196 0.0191 0.0187 -3.5003
CL 0.0914 0.0942 0.0857 -7.6584

L/D 4.6691 4.9392 4.5294 -5.7189  
 

With the exception of CL, the results of the new code have stayed very close to those of the 
previous two codes.   
 
     Figure 15 shows the shear stress distribution in the lower and upper surfaces with a Mach 
number of 10, waverider length of 10 m, and a shockwave angle of 16°.  The behavior of the 
shear stress is as expected, with the shear stress in the lower surface being much higher than that 
in the upper.  Also, this shows that most of the waverider is in the turbulent region, which is also 
expected.   
     Figure 16 shows the velocity distribution in the flowfield on the upper and lower surfaces.  
On the lower surface, the velocity is the highest just after the shockwave.  Then, the velocity 
drops as the flowfield goes further away from the shockwave.  The upper surface, however, has a 
constant velocity due to not coming into direct contact with the shockwave. 
 

 
Figure 15: Shear Stress Distribution Figure 16: Velocity Distribution  

through the Flowfield 
 



 
 

17

V. B.       CODE VALIDATION 
 

     Each of the waverider configurations developed with this code has an acceptable L/D.  The 
Kuchemann Barrier (Figure 2) is considered to represent the best performance possible at high 
Mach Numbers.  The waverider configurations developed with this code each achieved an L/D 
that was close to the Kuchemann Barrier, if not higher.  Figure 17 shows how the Flat Bottom, 
Lower Circular Arc, and Bat Wing waveriders compares to the Kuchemann Barrier using a 
waverider length of 10 and a shockwave angle of 14°.   
      Figure 18 shows the shear stress distribution along the lower surface of the Flat Top 
waverider.  The shear stress decreases as it gets further away from the edge.  However, the shear 
stress at the edge is not the highest as it would be expected to be.   
      Table 2 shows the aerodynamic properties, as well as volume, surface area, and volumetric 
efficiency of all twenty-three waverider configurations.  The highest L/D was achieved by the 
Lower Circular Arc Waverider, with an L/D of 4.7527.  The highest volumetric efficiency was 
also achieved by the Lower Circular Arc Waverider, with a volumetric efficiency of 0.78243. 
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Figure 17: Lift Over Drag Comparison 
 

Figure 18: Shear Stress Distribution  
on Flat Top Lower Surface 
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Table 2. Waverider Data 
 

Shape CL L/D CD Volume (m3) Surface Veff

Area (m2)
1 0.11209 4.2269 0.02652 58.0565 129.4860 0.24371
2 0.11214 4.6640 0.02404 25.9711 64.9136 0.31847
3 0.11211 4.4480 0.02521 43.9381 101.6120 0.25527
4 0.11214 4.7016 0.02385 22.2308 56.6178 0.36306
5 0.11210 4.3673 0.02567 51.4181 114.4620 0.25128
6 0.11214 4.7089 0.02381 21.6389 55.0574 0.37701
7 0.11219 4.7452 0.02364 17.2617 44.7753 0.56823
8 0.11214 4.7443 0.02637 16.3763 43.9595 0.55101
9 0.11210 4.3572 0.02573 52.1933 115.8680 0.25085
10 0.11210 4.6850 0.02393 24.1043 60.6333 0.33896
11 0.11212 4.4672 0.02510 46.3150 102.7520 0.26229
12 0.11214 4.7124 0.02380 21.2789 54.2127 0.38475
13 0.11218 4.5645 0.02458 38.8586 85.8081 0.29698
14 0.11214 4.7527 0.02360 15.1446 40.6014 0.78243
15 0.11212 4.4888 0.02498 46.0558 101.1490 0.26654
16 0.11214 4.6914 0.02390 24.2491 60.1120 0.34770
17 0.11212 4.4689 0.02509 46.5669 102.9180 0.26296
18 0.11214 4.6956 0.02388 23.1596 58.3632 0.35335
19 0.11210 4.3173 0.02597 54.0409 120.1740 0.24805
20 0.11214 4.6818 0.02395 24.3969 61.2937 0.33550
21 0.11214 4.6769 0.02398 29.9306 68.5911 0.33878
22 0.11214 4.7469 0.02362 16.3591 43.4303 0.58429
23 0.11212 4.5248 0.02478 28.2423 79.5796 0.26466

M=10.0 ß=16.0 Length =10.0  
 
V. C.     CONCLUSIONS AND RECOMMENDATIONS 
 
 Using this methodology, twenty-three different shapes were designed.  All twenty-three 
used the same flowfield, the same conditions, and the same x and r coordinates.  The only 
difference in their design was the set of shape angles used, which shows that any shape is 
possible with this method.  Also, each waverider achieved L/D that stayed close to the 
Kuchemann Barrier, sometimes even crossing it.  However, these waverider shapes are only 
forebodies.  A complete waverider configuration, adding a combustor and nozzle, should 
increase the L/D even further. 
 

In this research, the effects of blunting were not considered.  The waveriders designed 
with this method all have sharp edges.  In further studies, the effects of blunting should be 
explored and should in turn reduce the errors in the shear stress and L/D calculations. 
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