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ABSTRACT 

Accurately computing the inner structure of normal shock waves or oblique shock waves is 

crucial for many hypersonic applications. As such, it will improve the prediction accuracy of 

aerodynamics properties and aerothermal effects on hypersonic vehicles and spacecrafts during 

atmospheric entries. Because a shock wave usually has a thickness of a few mean free paths, it is 

quite difficult to accurately compute the detailed non-equilibrium inner structure across a shock 

wave with a continuum method.  

 

In this paper, we report our recent progress in developing a Gas-kinetic Bhatnagar-Gross-Krook 

(BGK) scheme for computations of one-dimensional, vibrational, non-equilibrium nitrogen flows 

through a planar shock wave. The present Gaskinetic-BGK scheme is a generalization of the 

work of Xu,
1,2

in that it solves for the shock structure with  multiple temperatures, including two 

translational temperatures, one rotational temperature and one vibrational temperature. The 

salient features of the present Gaskinetic-BGK method are multi-fold. Its applicability covers a 

wide simulation regime extending that of continuum flows to the transition flows; it is more 

computational efficient than the traditional direct simulation Monte Carlo (DSMC) method
3 

in 

time for shock wave simulation; it does not require additional or special techniques to stabilize 

the shock wave. To provide proper downstream subsonic boundary conditions for very strong 

shock waves, it is required to determine a proper post-shock equilibrium state where all 

temperatures have complete relaxation processes to a common equilibrium temperature. 

Analytical expressions of a complete set of generalized Rankine-Hugoniot Relations across a 

planar shock wave are obtained to account for the variant specific heat ratio γ  due to inner 

energy excitations.  Numerical simulation results by the present Gaskinetic-BGK method and the 

DSMC method are found in good agreement.  

INTRODUCTION 

Hypersonic rarefied gasdynamics for practical aerothermodynamic consideration often lies in the 

transition regime where the Knudsen number range is of order 0.01~0.1. In this regime, 

hypersonic rarefied air flows are characterized by large non-equilibrium regions with multiple 

temperatures, including different translational temperature 
n

T , 
t

T , rotational temperature 
r

T  and 

vibrational temperature 
v

T . There have been several approaches that attempted to solve this 
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problem. DSMC can easily model the non-equilibrium physics but it becomes increasingly 

expensive as the Knudsen number gets closer to the lower end of the transition region. On the 

other hand, classical continuum solution using Computational Fluid Dynamics (CFD) is found to 

deteriorate as the flow is approaching this transition regime.  Directly solving the Boltzmann  

equation by retaining the complete collision integral is hampered by the difficulty in the 

incorporation of the non-equilibrium physics and the extremely expensive simulation cost.   

 

The BGK model of the Boltzmann equation appears to provide a viable method to solve for the 

non-equilibrium flow problem because of its ease of formulation in the multi-temperature 

modeling of the distribution functions. But mostly the current BGK approaches are confined to 

flows of low Mach number. Among them the BGK-Xu method stands out as a promising 

approach to compute for hypersonic non-equilibrium flows with shock waves.  The outstanding 

features of the BGK-Xu method are described in a review paper of Xu
4
. 

 

The major part of the present work is an improvement of the BGK-Xu model in that it is based 

on Xu’s earlier work in References 1, 2. We proposed a complete BGK model prior to flow 

dissociation for the computation of a one-dimensional shock wave with all possible multiple 

temperatures, namely, two translational temperatures 
n

T , 
t

T , one rotational temperature 
r

T , and 

one vibrational temperature 
v

T . To validate this  new scheme, a test case of M∞ =10.0 is 

simulated with the BGK scheme and the DMSC method. For both the BGK scheme and the 

DSMC method, proper downstream equilibrium boundary conditions are required for the 

simulation.  However, due to the consideration of the vibrational energy, the specific heat ratio 

γ=Cp/Cv, is variant across the shock waves. Hence, the classical Rankine-Hugoniot relations are 

not applicable.  In this study, we derived a set of generalized Rankine-Hugoniot relations, with 

them the proper downstream flow conditions can be determined for the DSMC and BGK 

simulations.  

 

 

A ONE-DIMENSIONAL MULTIPLE-TEMPERATURE BGK MODEL  

 

In this section, we propose a general one-dimensional kinetic BGK scheme to compute non-

equilibrium flows with multiple temperatures. The model is applicable in simulations of planar 

shock waves with  monatomic, diatomic and polyatomic molecules.  

 

The Boltzmann equation expresses the behavior of a many-particle kinetic system in terms of the 

valuation equation for a single particle gas distribution function. The right hand side of the 

Boltzmann, which is mainly two body collisions, are valid in a large range from several hundreds 

of atmosphere to free molecular flow.
5 

To simplify the Boltzmann equation, the BGK model is 

formulated as  

 
f f g f

u
t x τ

∂ ∂ −
+ =

∂ ∂
 (1) 

where f  is the normalized number density distribution of molecules at position, and particle 

velocity u , at time t . For the right hand side term, pτ µ= / , is the characteristic relaxation time, 



Page 3 of 13  

and µ  can be computed by the Surtherland’s law; g  is the equilibrium state of gas with the 

following specific expression:  

 
2 221 2 2 2 2 2( ) exp( ( ) )( ) exp( )( ) exp( )( ) exp( )t vrK KKx t r v

x t t r r v v
g u U

λ λ λ λ
ρ λ λ ξ λ ξ λ ξ

π π π π
/ ///= − − − − −  (2) 

where ρ  is the density, U  is the macroscopic fluid velocity along the x-direction, (2 )m kTλ = / , 

m  is the molecular mass, k  the Boltzmann constant, and T  is a specific temperature. For an 

equilibrium flow, the internal variable ξ  accounts for the tangential, rotational and vibrational 

modes, and has an expression of 2 2 2 2

t r v
ξ ξ ξ ξ= + + , in which 

t
ξ , 

r
ξ , 

v
ξ  have 

t
K , 

r
K  and 

v
K  

degrees of freedom of translational, rotational, and vibration energy. For nitrogen, 

2 2
t r

K K= , = , while 
v

K  is decided by the vibrational energy, Eqn.(19). Notice the specific heat 

ratio γ  is not constant for vibrational non-equilibrium flow, and must be computed locally in 

each time step for each cell: 

3 2

3

r v

r v

K K

K K
γ

+ + +
=

+ +
           (3) 

 

The mass ρ , momentum Uρ , total energy Eρ , thermal energy along the tangential direction 

t
Eρ , rotational energy 

r
Eρ , and vibrational energy 

v
Eρ , are the moments of  f: 

 ( )T

t r v t r v
W U E E E E fdud d dρ ρ ρ ρ ρ ρ ξ ξ ξ= , , , , , = Ψ∫  (4) 

where Ψ  has the components  

 
2 2 2 2 2 2 21 1 1 1

(1 ( ) )
2 2 2 2

T

t r v t r v
u u ξ ξ ξ ξ ξ ξΨ = , , + + + , , ,  (5) 

and the volume element in the phase space with 
t r v

dud dud d dξ ξ ξ ξ= . Since only mass, 

momentum, and total energy are conserved during particle collisions, the collision term on the 

right hand side of the BGK model equation satisfies the following collision condition:  
 

 ( ) (0 0 0 )T

t r v t r v
g f dud d d S s s sαψ ξ ξ ξ− = = , , , , ,∫  (6) 

 

where 1 2 3 4 5 6α = , , , , , , the source terms are modeled as 0 5t t tr tr ,rs R(T . (T T ))ρ= − + /τ, 

r r tr rs R(T T ) /( Z )ρ τ= − , r vib v tr vs ( RT e (T )) /( Z )ρ τ= − , 
t

T , 
r

T , 
v

T , Ttr and Ttr,r are instantaneous 

temperatures along, normal to the shock plane, internal rotational, vibrational, averaged 

translational, and averaged tranlsational and rotational temperatures, respectively. 
r

Z  and 
v

Z  are 

the relaxation parameters for rotational and vibrational temperature. Notice in this scheme, we 

assume that the rotational and vibrational temperatures relax towards the equilibrium 

translational  temperature, based on the consideration that the internal energy is obtained through  

exchanges of energy from the translational energy.  

 

Base on the above BGK model, the Navier-Stokes equations can be derived with the Chapman-

Enskog expansion with the 1st-order expression only:  

 

 ( )f g g t u g xτ= − ∂ /∂ + ∂ /∂  (7) 
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To provide the gradients, in the expression for g , Uρ λ, ,  are assumed to be functions of both 

time and space. 
4
The process to calculate the slope in the equilibrium distribution g  in Equation  

7 is quite complex, and the final format is appended at the end of this paper. Note the solutions in 

the appendix are a general set of solutions, which are applicable to other situations such as 

monatomic flows by forcing the coefficients 5a  and 6a  to be zero. They are also applicable to 

study the rotational temperature relaxation-only process by setting 6a  to zero.  

 

In order to validate the above model, a finite volume method is used to solve the BGK model:  

 
1

1 2 1 2
0

1
[ ( ) ( )]

t
n n n

j j j j j
W W F t F t dt S t

x

δ

δ+
− / + /= + − +

∆ ∫  (8) 

where n

jW  is the cell-averaged mass, momentum, total energy, thermal energy in tangential 

direction, rotational energy, and vibrational energy. 1 2j
F + /  is the corresponding fluxes at a cell 

interface by solving the Boltzmann equation. In this scheme, the flux is calculated by the 

following format: 

 

 ∫ +Ψ= vrteq dddudffuF ξξξ2/)(  (9) 

 

Note that tδ  is the time step 1n n
t t tδ += − , and n

jS  is the source term in the thermal energy 

equation. The evaluation of the fluxes is based on the gas distribution function f  and feq at a cell 

interface, while the f is a multiple temperature distribution function and feq is a one temperature 

equilibrium distribution function.  The evaluation of flux by averaging with an equilibrium state 

velocity distribution function  feq   is helpful  to obtain a reasonable density profile across strong 

shock waves.  In the flux evaluations, the Prandtl number fix
4 

 is applied for all the energy fluxes.   
 

For strong shock wave computation, the specific relaxation time  τ must consider gradient term. 

For this purpose, a generalized collision time τ* is introduced in the numerical scheme, its 

relation to the collision time τ,  
6
which is well-defined in the continuum flow regime:  

  
)/(1 2* eqeq DffDτ

τ
τ

+
=                                              (10) 

 

GENERALIZED RANKINE-HUGONIOT  RELATIONS: TO DETERMINE POST 

STRONG SHOCK EQUILIBRIUM STATE 

 

In order to test the above multiple temperature BGK scheme with simulations of the inner 

structures of planner shock waves, one natural requirement is to specify a post-shock equilibrium 

state as proper downstream boundary conditions. Due to the fact that the downstream flow is 

always subsonic, the accuracy of the downstream boundary conditions have significant effects on 

the simulation.  
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For monatomic molecular gas, there is no vibrational and rotational temperature, and the specific 

heat ratio, 
p v

C Cγ = / , maintains a constant through shock waves, as long as the post-shock 

temperature is not high enough to trigger the ionization process. Hence, the classical Rankine-

Hugoniot relation can provide the boundary conditions. However, for diatomic or polyatomic 

molecules, because of the vibrational degree of freedom will be activated under high 

temperature, the specific heat ratio, γ , will be variant across the shock wave. For this reason, we 

first proceed to obtain general formulations to decide the post-shock equilibrium state for 

diatomic or polyatomic molecule gas. At this equilibrium post-shock state, we assume all 

temperature relaxation process has complete and the post-shock equilibrium temperature is not 

strong to trigger severe dissociation.  

 

For a planar shock wave, the control equations of density, momentum and energy equations are:
 7

 

 

( ) 0
d

u
dx

ρ =                                                                             (11) 

 
2 4

( ) 0
3

d du
p u

dx dx
ρ µ+ − =  (12) 

 

2 4
[ ( ) ] 0

1 2 3

d u du dT
u RT u

dx dx dx

γ
ρ µ κ

γ
+ − − =

−
 (13) 

 

Select a one-dimensional control volume with one side in the pre-shock region and another side 

in the post-shock equilibrium region. The length of this control volume can be sufficiently long 

to reach the post-shock equilibrium state. Denote the pre-shock state as state “1”, and the post-

shock state, where all thermal relaxations are complete, as state “2”. For these two equilibrium 

states, we can assume that both satisfy thermally perfect assumption that p RTρ= , where 

1 2R R= . Hence, no dissociation effect should happen. Notice for both states, all gradients are 

zero, hence, after several steps of derivations, simple relations between these two states can be 

obtained as followings:  
 

 

1 1

1

2 2

2

2

11 22

2

1 21 2

MT

T M

γ γ

γ

γ γ

γ

−

−

+
=

+
 (14) 

 

1 1

1

2 2

2

2

11 22 2 2

2

1 1 1 21 2

Mu M

u M M

γ γ

γ

γ γ

γ

γ

γ

−

−

+
=

+
 (15) 

 

2

2 1 1

2

1 2 2

1

1

p M

p M

γ

γ

+
=

+
 (16) 

 
1 1 2 2

1 2

2 2 2 2

1 1 2 2

2 2 2 2

1 1 1 2 2 21 2 1 2

(1 ) (1 )

( ) ( )

M M

M M M M
γ γ γ γ

γ γ

γ γ

γ γ
− −

+ +
=

+ +
 (17) 

 

The derivation process is similar to that for the classical Rankine-Hugoniot relation, which can 

be found in many textbooks, such as the book by Saad.
8 

However, to our surprise, we did not find 



Page 6 of 13  

any article in the literature reported the above equations, which links the two states with variable 

specific ratioγ . We call the above equations generalized Rankine-Hugoniot Relations across 

shock waves. The most related previous results can trace back to Tisen
9
 and Egger

10
 , they have 

studied the real gas effects in hypersonic flows by considering Van Der Waal’s equation of state 

or the Berthelot’s equation of state. Due to the relative compactness and general application 

scope, the generalized Rankine-Hugoniot Relations can be considered between the classic shock 

waves relations without real gas effects and the results by Tsien and Eddgar. The significance of 

the above relations is, for equilibrium flows across a shock wave, where relaxation process are 

assumed to be very fast, the above equations provide a set of post shock state calculation 

formula; to compute the inner relaxation process across the shock waves with finite relaxation 

speed, the above equations provide proper downstream boundary conditions.  

 

Though the above equations explicitly list the post-shock Mach number and specific heat ratio γ , 

to solve the above equation, we need to provide the  expression for the specific heat ratio γ  as 

the necessary condition to solve out the post-shock state Mach number. To consider the 

vibrational effects for diatomic molecules with the simple harmonic oscillator model, the specific 

vibrational energy associated with a mode having a characteristic vibrational temperature 
v

Θ  is:
 4

 

 
exp( ) 1

v
v

v

R
e

T

Θ
=

Θ / −
 (18) 

 

The effective number of degrees of freedom at temperature T  is:  

 
2

exp( ) 1

v
v

v

T
K

T

Θ /
=

Θ / −
 (19) 

For diatomic molecule and linear polyatomic molecule, the rotational degree is 
r

K =2, while for 

nonlinear polyatomic molecule, the rotational degree of freedom is 3
r

K = . Then the following 

iteration process is clear: First with a specific γ , use Equation (17) to decide an intermediate 

post-shock Mach number 2M ; Second, use this Mach number 2M  to decide a post-shock 

temperature 2T  with Equation (14); Third, use Equations (18, 19, 3) to decide a new specific heat 

ratio γ 2. The above three steps proceed until a tolerance is reached.  

 

Discussions  

 

1. The above generalized Rankine-Hugoniot Relations consider vibrational temperature effects, 

and are applicable in a wider range of temperature. If the post-shock temperature is quite close or 

higher than dissociation temperature, then they are not applicable. If 2γ  is set to 1γ , then the 

above relations consistently degenerate to the classical Rankin-Hughonit relations across planar 

shock waves.  

 

2. For hypersonic limit case, i.e., the incoming Mach number is significantly large, 1M → ∞ , 

then 2

2

1

2 2
M

γ

γ

−
→ , and 1 2 2

2 1 2

1

1

u

u

ρ γ

ρ γ

−

+
= → , 2 2 2

1 2 1

1

1

T p

T p

γ

γ

−

+
→ . These relations are still compatible with the 
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classical results under hypersonic limit, but it is interesting to notice that the post-shock 

equilibrium state has no relations with 1γ , i.e. the pre-shock factor 1γ  are forgot.  

 

3. Figure 1 shows two profiles of post-shock Mach number with and without this variant specific 

heat ratio approaches. For the constant specific heat ratio case, the specific heat ratio value is set 

to 1 4γ = . . The incoming flow parameters are 300T K∞ = , 51 10325 10P Pa∞ = . × , and the gas is 

nitrogen. The post-shock Mach number with constant specific heat ratio is included. Figure 2 

shows the post-shock equilibrium state pressure and temperature results vs. different incoming 

Mach numbers, with 300T K∞ =  and 51 01325 10p∞ = . × . It is evident that, with the 

consideration of vibrational temperature, or a variant γ  case, the post-shock equilibrium 

temperature is lower than the case of constant γ , while the pressure is higher. Hence, the 

difference in density is well announced for hypersonic flow with or without vibrational energy 

effect.  

 
Figure 1. Profiles  of post shock   Mach number, and specific heat ratio. (N2, 300T∞ =  K 

51 01325 10.ρ∞ = × Pa) 

 

4. The derivation process assumes p RTρ= , and the same R  are used in the pre-shock and 

post-shock regions. Hence, when the post-shock temperature is close to the characteristic 

dissociation temperature 
d

Θ , the solution is not applicable because R  is not constant. We can 

use this dissociation temperature to estimate the asymptote values:  

 
2 4 18 7

exp( ) 1 2 14 5

v d v d
v

v d v d v d

K γ
Θ /Θ + Θ /Θ

→ , →
Θ /Θ − + Θ /Θ + Θ /Θ

�  (20) 

The above approximation uses the fact that the characteristic vibrational temperature is far less 

than the dissociation temperature 
v d

Θ Θ� . The asymptotic solution for the post-shock Mach 

number is:  

 2
2

2

1 2 1

2 18 7 3

d v

d v

M
γ

γ

− Θ + Θ
→ = →

Θ + Θ
 (21) 

This limit value is smaller than the constant specific heat ratio, which is 1 7/  for nitrogen. The 

physical reason for this 11%  lower value of post-shock Mach number for gas nitrogen is 
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obvious: with the consideration of the vibrational temperature, which has the significantly wider 

energy level, more post-shock energy are transferred more into the thermal energy, hence, the 

kinetic energy, is significantly lower than the kinetic energy without a consideration of the 

vibrational effect.   

 

 

 
Figure 2. Profiles  of post shock   Pressure and  and Temperatures. (N2, 300T∞ =  K, 

51 01325 10.ρ∞ = × Pa) 

 

NUMERICAL SIMULATION AND DISCUSSION OF RESULTS 

 

We implemented the above GasKinetic BGK scheme and performed one numerical simulation of 

a strong planar shock wave with M=10.0. In this simulation, the specific relaxation number Zr 

and Zv are set to 3 and 50, correspondingly. To compare the results, a DSMC simulation is  

performed for the same case as well by using a DSMC package named MONACO
11

, developed 

at the University of Michigan.  

 

To properly use the generalized Rankine-Hugoniot relations, in the simulation, we adopted a  

long simulation domain where the downstream boundary is 5 times of the shock thickness. 

 

To accelerate the simulations, for both the BG and the DSMC simulations, the computational 

field are initialized with step profiles, where the post-shock quantities are obtained with our 

generalized Rankine-Hugoniot Relations instead of common Rankin-Hugoniot relations. The 

BGK scheme used () 0x∂ /∂ =  boundary conditions to compute the flux from the downstream 

boundary, and the specific heat ratio γ  is recalculated at each time step and for each cell. In the 

DSMC simulation, the moving piston scheme
4
 at the downstream boundary is used, and a 

standard shock  stablization process
4
 is adopted  in the simulation as well.  In all the simulations, 

the gas is assumed to be nitrogen, though the current BGK package can be used to simulate shock 

waves with monatomic gas. In the following results, density and temperature profiles are 

normalized by the values at both sides of the shocks, for example, ( ) ( )
pre post pre

T T T T T= − / − . In 

the BGK simulation, the viscosity is using the following formula: 74.05 )
273

(10656.1
T−×=µ .  
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Correspondingly, the Variable Hard Sphere (VHS) model was used in the DSMC simulation with 

index factor ω=0.74. 

 

In the DSMC simulation, the translational-vibrational energy exchanges are set to happen with a 

probability of 0.02. To be consistent with the relaxation rate in the MONACO package, we 

adopted 3 0
r

Z = .  and 50 0
v

Z = .  in the BGK simulation.  We want to point out that it is very 

difficult for the BGK scheme to repeat the exact energy re-distribution relations in the DSMC 

method, when the vibrational energy relaxation is evolved.  

 

To illustrate the vibrational effects, we choose a case with strong shock waves. The computation 

parameters are as followings: 10 0M ∞ = . , ∞T =226.149 K, 2 31 7413 10 kg mρ −
∞ = . × / . For this case, 

the thermal non-equilibrium effect is significant and the equilibrium specific heat ratio are 

1 1 399γ = .  and 2 1 3193.γ = , correspondingly.  

 

Figure 3 shows preliminary number density profiles; Figure 4 shows the two translational 

temperatures and Figure 5 shows the rotational, vibrational temperature profiles and the specific 

heat ratio profiles. It is quite evident that the thermal non-equilibrium effects and the relaxation 

processes are clearly captured. Better matches can be obtained by changing the relaxation factor 

Zr  and Zvib, however,  to compare the results between the BGK and the DSMC results, we  fixed  

these two numbers.  We must also  point it out that  due to some difference associated with these 

two methods, especially when considering  the vibrational effects,  it is very difficult  to  achieve  

accurate match between  these results. And it  is also worthy to mention that, we did not find any  

previous publications in the literature reporting any  similar  DSMC simulations and BGK 

simulations.   

 
Figure   3.   Profiles of density in an M=10 nitrogen shock wave. (BGK result, 

226 649T K∞ = . ,  3 31 741315 10 kg mρ −
∞ = . × / ) 

 

We want to point out that though the BGK scheme development is complete, the current results 

are just preliminary.  Both the BKG scheme results and the DSMC results will be improved and 

with more comprehensive test cases will be included in a future paper.  
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Figure 4. Profiles of translational temperatures in an M=10 nitrogen shock wave.(BGK 

result,
3 31 741315 10 kg mρ −

∞ = . × / , 226 649T K∞ = . ) 

 
Figure 5. Profiles of rotational, vibrational temperatures and γγγγ in an M=10 nitrogen shock 

wave.(BGK result, 3 31 741315 10 kg mρ −
∞ = . × / , 226 649T K∞ = . ) 

CONCLUSIONS  

In this paper,   we reported our recent progress in  developing a 1D thermal nonequilibrium 

GasKinetic BGK solver. This BGK solver considered vibrational energy  effects, and can be used 

in simulating the inner structures of   strong shock waves. Compared with the  DSMC method,  

this scheme is capable of reducing the  simulation  cost.  Another merit of this scheme is that the 

shock wave  is stable during the computation. Hence, no special stabilization treatment as  the 

DSMC  method required, are needed. During the numerical simulation of shock waves, to 

provide proper downstream boundary conditions at equilibrium state,  a set of generalized 

Rankine-Hugoniot relations are obtained, and used to provide the downstream boundary 
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conditions for  both the DSMC  method and the BGK schemes.  Numerical  simulations  of  

strong  shock waves  indicate that the  BGK schemes can capture  the inner  structures for the 

shock  waves with  vibrational  energy  effects.   

 

This development sets a solid foundation for the future constructions of general two-dimensional 

and three-dimensional GasKinetic BGK schemes for thermal non-equilibrium flows. 
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APPENDIX  

The equilibrium state of gas is:  

 
2 221 2 2 2 2 2( ) exp( ( ) )( ) exp( )( ) exp( )( ) exp( )t vrK KKx t vr

x t t r r v v
g u U

λ λ λλ
ρ λ λ ξ λ ξ λ ξ

π π π π
/ ///= − − − − −  (22) 

where 
t

ξ , 
r

ξ , 
v

ξ  have 
t

K , 
r

K  and 
v

K  degree of freedom of translational, rotational, and 

vibration energy.   Since  

 ( )T

t r v
U E E E E g dρ ρ ρ ρ ρ ρ ψ, , , , , = Φ∫  (23) 

where Eρ , 
t

Eρ , 
r

Eρ  and 
v

Eρ  are the total, translational, rotational and vibration energy, 

correspondingly, and 2 2 2 2 2 2 21 1 1 1
2 2 2 2

{1 ( ) }
t r v t r v

u uψ ξ ξ ξ ξ ξ ξ= , , + + + , , , .  

By the Taylor expansion,  

 2 2 2 2

1 2 3 4 5 6( )
t r v

g
a a u a u a a a g

x
ξ ξ ξ

∂
= + + + + +

∂
 (24) 

and  

 ( )T

t r v

g
U E E E E d

x x
ρ ρ ρ ρ ρ ρ ψ

∂ ∂
, , , , , = Φ

∂ ∂
∫  (25) 

where 
t r v

d dud d dξ ξ ξΨ = .  

The above equations have the following solutions:  

 
2

6

4 ( )
v v

v

v

E
a

K x x

λ ρ ρ
λ

ρ ρ

∂ ∂
= −

∂ ∂
,      

2
)

5

(4
r

r

r

E
a

K x x

ρλ ρ
λ

ρ ρ

∂ ∂
= −

∂ ∂
,    

2

4

4 ( )
t t

t

t

E
a

K x x

λ ρ ρ
λ

ρ ρ

∂ ∂
= −

∂ ∂
 (26) 

 

Then, define  

 
( ) ( )( )

2 2 2

v t t vr r

v r t

K E K EK E
A

x x x x

ρ ρρρ

ρ λ ρ λ ρ λ ρ

∂ ∂∂∂
= − − −

∂ ∂ ∂ ∂
,            

( )U
B U

x x

ρ ρ

ρ ρ

∂ ∂
= −

∂ ∂
 (27) 
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 2 24 5 6( ) ( )( )( ) 1 1 1
( )( ) ( )

4 2 2 2

t v t r vr

x t r v x

E E K a K a K aEE A
C U U

x x x x

ρ ρρρ

ρ ρ ρ ρ λ λ λ λ λ

∂ ∂∂∂
= − − − − + + + − +

∂ ∂ ∂ ∂
(28) 

 

 2

3
4 [ ]

x
a C BUλ= − ,          3

2 2 12 [ ]
x

x

Ua
a b bUλ

λ
= − − ,          2

1 3 2

1
( )

2
x

a A U a Ua
λ

= − + −  (29) 
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NOMENCLATURE, ACRONYMS, ABBREVIATIONS 

λ mean free path 

γ specific heat ratio, =Cp/Cv 

τ relaxation time 

µ viscosity 

ρ density 

λ mean free path 

ξ internal particle velocity 

Θv   characteristic vibrational temperature 

Θd   characteristic dissociation temperature 

 

f  velocity distribution function with multiple temperatures 

feq  velocity distribution function with single temperature 

g equilibrium velocity distribution function 

m atomic mass 

k Boltzmann constant 

p   pressure 

 

E energy 

F macroscopic  flux 

K  degree of freedom 

U     mean velocity 

W macroscopic property variables 

Zr specific  rotational  energy relaxation number , =3 in this  paper 

Zv specific  vibrational  energy relaxation number , =50 in this  paper 

Tn        translational temperature  normal to the  planar shock wave  

Tt           translational temperature  parallel to the  planar shock wave 

Ttr        averaged translational temperature 

Ttr,r     averaged  temperature calculated from translational and rotational temperature 

Tv   vibrational temperature 

Teq  equilibrium temperature 

 

BGK  Bhatnagar-Gross-Krook 

CFD Computational Fluid Mechanics 

Kn  Knudsen number 


