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Why Thermal Energy Storage?

• Dampen effects of periodic boundary conditions on low 
thermal mass objects.
– Spacecraft on orbit
– Spacecraft on planetary surfaces such as Mars
– Terrestrial Applications
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Why Thermal Energy Storage?

• Reduce heating rates of light weight, high powered 
devices on short duration missions to extreme 
environments
– Landing on Venus Surface
– Atmospheric probes to the Gas Giant Planets
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Back-of-the-Envelope Analysis

• Five basic equations describe Thermal Energy Storage 
Performance:
– Conservation of Mass

• Mass of Phase Change Material, Filler Material and Casing
– Conservation of Energy

• Maximum energy storage capacity
– Temperature Range Constraint

• Temperature gradient between component and melting 
temperature

– Computation of Equivalent Conductance
• Net conductance of filler plus PCM.

– Additive Area Relationship
• Heat flow cross-sectional area of PCM and filler materials
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Back-of-the-Envelope Analysis

{1} Mass = (ρPCMAPCM + ρFAF )t + ρC(2AT + 4tAT
0.5)tC

{2} EMAX = ρPCMAPCM·t·hf + [ρFAFCP-F + ρPCMAPCMCP-PCM]t/2(Tcomp - Tmelt)

{3} Q = kTAT(Tcomp - Tmelt)/t

{4} kTAT = kPCMAPCM + kFAF

{5} AT = APCM + AF

t

tc PCM Filler Case
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Back-of-the-Envelope Analysis

• Sample Results from 
Simple Analysis

• Area Ratio is:
Filler area/Total Area
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Thermal Modeling

• Examine more complex 
shapes/geometry than 
rectangular boxes

• Evaluate 2-D and 3-D effects
• Utilize more accurate specific 

heat data (as a function of 
temperature and phase)

• Shown is a model of a simple 
unit with aluminum fins
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Thermal Modeling

• Thermal models make it 
easy to model complex 
geometries or 
configurations.

• Module w/ graphite shell, 
Rubitherm-35 PCM and 
copper foam filler.

• Copper heater plate 
mounted on top
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Phase Change Materials

• Conducted search of phase change materials with high 
heats of fusion.

• Paraffins are most common melt material.
• Lithium Nitrate has one of the highest heats of fusion 

and has a high density especially compared to paraffins.
– Measured hf for LiNO3 was ~287 kJ/kg

– Most paraffins range from 170 to 230 kJ/kg

– Density of LiNO3 is ~1.5 g/cc

– Most paraffins are around 0.8 g/cc

• Implication: For a given container size, LiNO3 has more 
than double the heat capacity of a paraffin!
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Lithium Nitrate Developments

• LiNO3 is more difficult to handle than paraffins:
– Must add water to it to form LiNO3-3H2O

– It readily absorbs water from ambient air and reduces heat 
capacity.

• Must keep it sealed until loaded into Thermal Storage Module

– Melting point is about 30°C, freezing point is around -5°C.

• This phenomenon is called subcooling.

• Can be reduced with a catalyst: add 1% by weight of ZnNO3

• With catalyst, freezing point is around 28°C.

• LiNO3 appears to be compatible with aluminum, no 
corrosion products have been observed.
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Heat Capacity Measurements

• Heat capacity of LiNO3
was measured because 
literature data in both 
solid and liquid phases 
were incomplete

• Measurements were 
made using Differential 
Scanning Calorimetry
– This tends to produce 

broader melting 
temperatures than 
observed in bulk samples.
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Filler Material Developments

• Aluminum fins have traditionally been used as the filler 
material for conducting heat into the melt material.

• Carbon foam, trademarked name “Pocofoam”, has been 
used successfully as a filler material with paraffin loaded 
storage modules by others.

• Carbon foam is hydrophobic and will not absorb water 
based materials such as LiNO3-3H2O.

• Adding a small amount of surfactant to LiNO3-3H2O 
solves the absorption problem.
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Pocofoam Testing

• Pocofoam floats in untreated 
water as shown in top photograph 
demonstrating hydrophobia.
– This means LiNO3 would not be 

absorbed into Pocofoam

• Adding surfactant to the water 
causes immediate absorption by 
the Pocofoam as shown in bottom 
photograph and sinks.
– Same trick works for water spiders!
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Prototype Design Features

• A phase change thermal energy storage module was 
designed with the following features:
– A stiff lid to make a stable mounting surface for accommodating 

electronic components (we just used a heater for testing).
– A thin backplate to act as a diaphragm to reduce pressure 

variations as LiNO3 changed phase.
– Carbon foam filler core
– LiNO3-3H20 plus 1% zinc nitrate plus surfactant
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Prototype Components

LID
ENCLOSURE

POCO Foam
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Plexiglas Model

• Before making the aluminum casing module, a Plexiglas 
unit was fabricated to verify filling because of the 
hydrophobic nature of Pocofoam.

Completely filled moduleLiquid line evident during 
filling
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Aluminum Casing Prototype

• Photographs of the completed phase change module
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Thermal Testing of Prototype

• Power levels applied to unit: 15, 30, 60 and 90 watts
• Tests ran from 0 to 90ºC
• Tests repeated 5 times each to check consistency
• Module was placed inside insulated box to reduce heat 

leaks.
– Observed approximately 8 watts of heat leak through insulation

Test Set up at 
Vendor’s facility
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Test Results

PCM Tests Comparing Different Heat Loads

Elapsed Time, (min)
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7 Watts (15)

22 Watts (30)

52 Watts (60)

82 Watts (90)
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Correction for Heat Leak

• Energy absorbed during melt 
should not change with 
power.

• Observed 15 Watt case took 
much longer to melt than 
expected.

• Estimated 8 Watt heat leak 
and corrected the melt 
energy to be around 40 W-
hr/kg.
– If paraffin were the melt 

material, melt energy would be 
around 20-30 W-hr/kg

Energy Absorbed by Phase Change Module
During Melt Phase
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Corrected for 8 Watt heat leak

Uncorrected Data
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Conclusions

• An improved Thermal Energy Storage Device suitable 
for spacecraft applications has been developed.

• The melt material was lithium nitrate and had a melt 
temperature around 30C.

• The freezing point subcooling was reduced to only 2C 
with the addition of 1% zinc nitrate.

• Pocofoam was used as the filler material, hydrophobic 
effects were eliminated using a surfactant.

• Energy storage capacity of unit is 30% to 100% greater 
than a paraffin filled unit.
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