Lightweight, Low-Cost Heat Sink for High-Heat Flux **Applications** Art Fortini ULTRAMET **TFAWS** Meeting August 8, 2006

Basic Concept

 Use open-cell SiC foam as an extended surface or cooling fin for SiC integrated circuits (ICs).

Advantages

- Perfect CTE match with SiC ICs
- High thermal conductivity
- High surface area
- Low pressure drop
- Immune to corrosion

Silicon Carbide Foam

- High surface area
- Important for transferring heat to cooling medium

Pressure Drop

- Silicon carbide foam
 - 0.5 x 2 x 3" slab
 - Water flow parallel to long axis.
 - Important for flowing large quantities of coolant without pressure drop penalty.

Pressure Drop

Carbon foam

 1" thick slab
 Air flow
 perpendicular to
 thickness
 Very low
 pressure drop

Ultrafoams

- Begin with polyurethane
- Impregnate with resin
- Pyrolyze to form glassy carbon
 - 3-1000 pores per inch (ppi)
- CVI with SiC
 - 5-30% relative density
 - Other materials: Si, Gr, pyC, Si(C), refractory metals, etc

Ultrafoam

Vitreous carbon

Silicon carbide

Experimental

Unique Thermal Control Challenges (High Heat Flux, High Power, Low Temperature)

 Phase II goal was to reach 1000 W/cm² with temperature below 150°C

Experimental Results

Foam PPI / density	Heat Flux	Flow Rate	Heat Flux / Flow Rate	Temperature
	(W/cm²)	(GPM)	(W min /cm ² G)	(°C)
100ppi/ 9.8%	711	0.5	1422	113
1000ppi / 12%	867	0.5	1734	122
100ppi/ 10%	612	0.5	1224	47.8
1000ppi/ 5%	1006	0.64	1572	165
300ppi/ 20%	1011	0.5	2022	53
100ppi/ 20%	1000	1.0	1000	135
300ppi/ 20%	758	0.3	2527	42.4

- Phase II goal: 1000 W/cm² while below 150°C.
- Ultramet SiC foam 1011 W/cm² at only 53°C!

Experimental Results

Experimental Results

Heat Stress = Heat Flux/ Flow rate (Gallons per minute)

Thermal Modeling

X-Ray Tomography

Ultramet SiC Foam

Thermal Model Input

Part	Side Dimensions	Thickness	Thermal Conductivity (W/m C)
SiC Foam	2 x 2"	0.5″	40
TIM1	2 x 2"	100 µm	40
SiC Heat spreader	2 x 2"	250 µm	200-500 (4H-SiC)
Die Attach (TIM2)	5 x 5 mm	50 µm	40
Die	5 x 5 mm	380 µm	200-500 (4H-SiC)
GaN active area	0.25 x 4 mm	n/a	n/a

Modeling Conclusions

Other Work- High Heat Flux GaN-Based RF Components and Cooling Methods

Jeff Calame, Steve Binari, Robert Myers †, and Frank Wood † Naval Research Laboratory, Washington, DC 20375

Experimentally measured temperatures (Cooler surface under heat probe source center) 200 (0.502 gal/min, 20 °C H O inlet) Temperature (°C) Aluminum 150 nitride Silicon coole cooler 100 OFHC copper cooler 50 Ultramet Foam (same flow rate) 0 500 1000 2500 1500 2000 0 Measured power density (W/cm^2)

3rd Annual Workshop on Thermal Management of High Flux Commercial and Military Electronics University of Maryland, College Park, MD October 18, 2004

-Micromachined to 500µm

•Ultramet SiC foam has comparable performance to micromachined OFHC copper and single crystal silicon with diamond heat spreader.

Summary

• Effects of SiC foam:

- 1011 W/cm² @53C w/ 0.5 GPM water
- Thermal Model predicts improvements by going to heat spreader configuration.
 - 27 °C with heat spreader w/ 0.1 GPM
 - 61 °C for 100ppi. 10% density (stock item) at low flow rate.
- ♦ Excellent heat transfer → little material is required (small volume/ light and inexpensive).
- Low coolant flow rates requires less in way of supporting systems- pumping, filtration, etc.