

Transient and Steady-State Performance Testing of Active Thermal Surfaces

Saeed Moghaddam¹, John Lawler¹, Joseph Currano¹, and Jungho Kim²

¹Advanced Thermal and Environmental Concepts, Inc. (ATEC) 7100 Baltimore Ave., College Park, MD 20740 ²Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

Phone: 301-699-1025, s.moghaddam@atec-ahx.com

Outline

- Motivation and Objectives
- Theory of Operation
- Experimental Verification of Concept
- Development of Flight Hardware
- Ground Based Testing
- Conclusion Remarks

Motivations and Objectives

- To improve thermal control of spacecraft, active materials and structures are being developed that allow the emissivity of a surface to change
 - Electrochromic coatings
 - Polymeric and inorganic materials
 - Electrostatic devices
 - Gap between layers controlled by application of DC voltage
 - MEMS Louvers
 - Micromachined analogs of louvers
- Objectives of work:
 - Develop lightweight, accurate, fast, robust, emissivity measurement technique that is capable of evaluating many coatings simultaneously
 - Assess this technique on ground
 - Develop apparatus for space flight experiment
 - Fly apparatus to determine long-term behavior of various passive and active emissivity coatings

Methods of Measuring Emissivity

Calorimatry based

- Heat in=Heat radiated away
- Needed to isolate thermal mass from container to minimize heat leaks, account for heat transfer from wires, etc.
- Can only test one surface at a time
- Slow response

Methods of Measuring Emissivity

Spectral methods

Measures the reflectivity of a surface at various wavelengths.

$$a_1 + t_1 + r_1 = 1$$

If surface is opaque (t₁=0),

$$a_1 = 1 - r_1$$

Since $\mathbf{a}_1 = \mathbf{e}_1$, $\mathbf{e}_1 = 1 - \mathbf{r}_1$

- Non-contact measurement that can be performed remotely
- Provides spectrally resolved information
- Does NOT work for electrostatic emissivity control schemes (ESR developed by Sensortex)

Theory of Operation

Employ RDF heat flux sensors

- Differential thermopile: Heat passing through polyimide film produces a small temperature differential
- Output voltage is proportional to heat flux

Figure 1. Micro-Foil® In-Depth Thermopile

Photograph of a RDF Heat Flux Sensor (Model 27160)

Theory of Operation

Test Chamber Schematic

- Heat flux gauges with coatings are mounted on a copper block and place in a vacuum chamber.
- Chamber is immersed in a bath of liquid nitrogen to simulate radiation to deep space.

Three black painted sensors on copper substrate

Advantages of Current Concept

- Measures DIRECTLY the total radiation heat transfer from the wall (the quantity of interest in thermal management of satellites).
- Self powered: Sensors require zero power. Only power to the data acquisition system is required for passive operation.
- Robust: No moving parts, very simple operation, easy to implement using space-qualified hardware, should easily pass vibration testing.
- Do not need to know temperature history like calorimetry.
- Can measure changes in emissivity of Sensortex device, electrochromics, MEMS louvers, etc.
- Fast transient response (~10° seconds).
- Compact: Can accommodate numerous active/passive sensors on the same substrate.
- Self calibration: One surface can be that of a known emissivity so in-situ calibration can be performed.

Ground Based Test Apparatus

3D Schematic of Complete Assembly

Bottom cone to directs second reflection to chamber wall

Ground Based Test Apparatus

- > Thermocouples
 - 3 on chamber walls, 1 on cone, 3 on lid, 4 on Cu block
- A pair of feedthroughs for each gauge and heater

Vacuum chamber lid and test module assembly

Vacuum chamber

Ground Based Test Apparatus

Test Apparatus

Data Reduction Procedure

Heat flux results are in agreement with theory

Comparison of the results of sweep and step tests with theory

Emissivity of the three back painted surfaces

Integration of the Heat Flux-Based Emissivity Measurement Technique with Sensortex Electrostatic Radiator (ESR)

Operational Principle of ESR

- Application of a voltage potential between the cover film and skin pulls down the film
 - Backside of the film and skin have low emissivity
 - Low heat transfer in separation mode
 - High heat transfer in contact mode

Schematic of the ESR operation principle

Heat Flux Sensor and Sensortex ESR Assembly

A custom made (manufactured by RDF, Inc.) heat flux sensor was installed between ESR and its substrate (i.e. skin)

Schematic of heat flux sensor and ESR assembly

MISSE-6 Mission

- Air Force Boeing NASA program
- Study effect of space exposure on new materials
- Deploy on exterior of International Space Station
- Nominal six month mission
- Self-contained
 - Power from ISS
 - No data telemetry
 - Limited volume, many experimental samples
- Reduced testing requirements
 - Fits with limited budget for electronics & testing

MISSE-6 Flight Module

Schematic diagram of MISSE module with six HFB emissivity sensors. Two large sensors are for testing active thermal surfaces

Ground Based Testing

ESR devices under test on MISSE-6 platform

Ground based testing of MISSE-6 flight module

20

Ground Based Test Results

ESR test results at 300 V applied voltage

Conclusion Remarks

- New heat-flux based method for measuring emissivity was developed:
 - Measures DIRECTLY the total radiation heat transfer from the wall (the quantity of interest in thermal management of satellites).
 - Self powered: Sensors require zero power. Only power to operate the data acquisition system is required.
 - Robust: No moving parts, very simple operation, and easy to implement using space-qualified hardware.
 - No need to know thermal properties and temperature history, unlike calorimetry.
 - Fast transient response (~10^o seconds).
 - Compact: Can accommodate numerous active/passive sensors on the same substrate.
- Capability of the technique in measurement of ESR performance was demonstrated

Acknowledgements

We appreciate the support provided by an Air Force SBIR Phase I & II contracts, administered by the SBIR Program Office, Air Force Research Laboratory, Wright-Patterson Air Force Base and by Dr. Ming Chen, our Air Force technical monitor.

Thank You!