
- 1 of 6 -

Advanced Post Processing Techniques
of Thermal Models using Microsoft Excel®

Hume Peabody
Thermal Modeling Solutions, LLC

ABSTRACT

As thermal models have become increasingly
large and detailed, the process of data reduction
to evaluate results has become more
challenging. Analysts often write out specific
results at run time that are expected to be
important; however, not all important data is
identifiable ahead of time. Once the output data
is available, it is often imported into Microsoft
Excel® or other spreadsheet tools for further
evaluation. While most analysts are familiar with
Excel, this paper seeks to demonstrate some of
the more advanced functions available to further
simplify data reduction. By outputting all data
from the thermal model and using combinations
of text manipulation and lookup functions,
dynamic workbooks can be created that respond
to user changes. Combinations of relatively few
Excel functions allow a user to quickly look up
data (heat loads, temperature, capacitances,
etc.) for nodes or groups of nodes. A simple
task using basic commands is introduced and
further functionality is added through
subsequent examples in the paper. Additional
“tips and tricks” are also discussed, including
Visual Basic macros and adding text information
to images.

INTRODUCTION

While thermal analysis time has been reduced
with newer and more efficient model generation
tools and solution times have decreased with
faster solvers, the effort to post process data
has generally remained the same. However, if
the output data has been imported into a

spreadsheet, like Microsoft Excel®, then the
task of finding, processing and displaying
relevant data can be easily accomplished using
the extensive library of functions like those found
in Excel. The use of text manipulation, lookup,
and calculation functions can quickly locate,
compute, and display data. The INDIRECT
command allows a user to build complicated
formulas based on the inputs of other cells (Row
Location, Column Location, Worksheet location,
etc.). Lastly, additional functionality can be
added by generating functions and subroutines
using Visual Basic for Applications.

GENERAL EXCEL USAGE

Excel allows a user to enter formulas or
text/numbers into various cells on worksheets.
Formulas may reference the Excel library of
functions and/or other cell locations. The
formulas are then evaluated to find the value of
the entered formula. Up to seven nested layers
of functions may be included in a single formula.

References to cell addresses in formulas may
contain the $ character. This anchors the row or
column so that when the formula is copied or
filled across/down, the column/row does not
change. Therefore, placing a $ in front of the
column letter will make the column stay fixed,
while placing a $ in front of the row number will
make the row stay fixed when the formula is
copied. Use of the F4 function key with a range
selected in the formula bar toggles between all
combinations of anchoring (Row and Column,
Row, Column, None).

- 2 of 6 -

TEXT MANIPULATION

The MID function returns a substring from the
input text and has the following syntax:
MID(Text, StartIndex, Length). This function
could be used to return the node number from a
{Submodel.NodeNumber} syntax. However,
often the starting location of the substring to be
returned is not known explicitly. For this, the
FIND and LEN functions are used. FIND returns
the location in the string where a particular
search string is found and has the following
syntax: FIND(FindText, WithinText, StartIndex).
A StartIndex of 1 indicates to begin searching
from the beginning of the text. The LEN function
simply returns the length of the argument text
and has the following syntax: LEN(Text).
Combining the LEN and FIND results allows a
user to determine the number of characters to
return from the MID function. The TEXT
function can be used to output text into the
desired format and has the syntax: TEXT(text,
format). Finally, the & character can be used to
combine substrings into a single output string.
The following examples assume that cell B3
contains the string “SPACE.1234”.

=MID(B3, 7, 4) yields 1234
=MID(B3, 1, FIND(“.”,B3,1)-1) yields SPACE
=MID(B3, FIND(“.”,B3,1)+1, LEN(B3)-FIND(“.”, B3, 1))
yields 1234
=TEXT(MID(B3, 7, 4),”0.00E+00”) yields 1.23E+03
=“SPACE“ & “.1234“ yields SPACE.1234

CONDITIONAL and BOOLEAN OPERATIONS

IF is a simple condition check, with the following
syntax: IF(LogicalTest, Value If True, Value If
False). ISERROR, ISTEXT, ISNUMBER, and
ISBLANK are all used to determine if a particular
cell or value returns an error or is text, numeric
or blank respectively.

To combine LogicalTests, values may be
ANDed, ORed, or NOTed. The syntax is as
follows: AND|OR|NOT(Condition1, Condition2,
Condition3 …) For AND, all conditions must be
TRUE for a TRUE value to be returned; for OR,
if any of the arguments are TRUE, then a TRUE
value is returned. NOT simply inverts a FALSE
to a TRUE and vice versa. Nesting these values
allows a user to create complicated conditions to
be tested including all three Boolean operations.
Assuming Cell B3 contains the string
“SPACE.12”, the following formulas would yield
the results listed.

=IF(MID(B3, 7, 2)=”12”, ”Is12”, ”IsNot12”) yields Is12
=IF(NOT(MID(B3, 1, 5)=”SPACE”)),”Not Space”, “Is
Space”) yields Is Space
=IF(OR(MID(B3, 7 ,2)=”12”, MID(B3, 1, 5)=“SPACE”),
”Is12orSpace”,”IsNot12orSpace”) yields Is12orSpace
=IF(AND(MID(B3, 7, 2)=”13”, MID(B3, 1, 5)=“SPACE”),
”IsSpace13”,”IsNotSpace13”) yields IsNotSpace13

SUMIF

The SUMIF function searches for a specified
value over a range of data and returns the sum
of all values found from either the search range
or a specified return range. The syntax is as
follows: SUMIF(SearchRange, SearchValue,
ReturnRange). If a user enters a column of data
for the SearchRange and a different column for
the ReturnRange, then any values matching the
SearchValue would return the value in the
ReturnRange at the same row/column. If no
ReturnRange is specified, then the summed
values will be taken from the SearchRange. For
unique data (i.e. thermal nodes), SUMIF will
return only one value.

 A B C D

1 Submodel Node T(1) T(2)
2 SUB1 SUB1.1 25.2 26.0
3 SUB1 SUB1.2 26.7 27.0
4 SUB1 SUB1.3 31.8 31.8
5 SUB2 SUB2.1 29.6 29.7
6 SUB2 SUB2.2 50.2 52.0

Sample Data 1

=SUMIF(B2:B6,”SUB1.2”,C2:C6) yields 26.7
=SUMIF(B2:B6,”SUB2.2”,D2:D6) yields 52.0
=SUMIF(B2:B6,”SUB3.2”,D2:D6) yields 0.0

SUMIF can also be used to find the total
heatload applied to a group of nodes.
 A B C D

1 Submodel Node Q(1) Q(2)
2 SUB1 SUB1.1 2.5 2.5
3 SUB1 SUB1.2 2.5 2.5
4 SUB1 SUB1.3 3.5 3.5
5 SUB2 SUB2.1 1.71 1.75
6 SUB2 SUB2.2 1.63 1.67

Sample Data 2

=SUMIF(A2:A6,”SUB1”,C2:C6) yields 8.5
=SUMIF(A2:A6,”SUB2”,D2:D6) yields 3.42
=SUMIF(A2:A6,”SUB3”,D2:D6) yields 0.0 (not
found)

- 3 of 6 -

COUNTIF and COUNTBLANK

Similar to SUMIF is the COUNTIF function.
However, instead of returning a sum, it returns a
count of the number of SearchValues found.
The syntax is COUNTIF(SearchRange,
SearchValue). This could be used to determine
the number of nodes in a particular submodel. It
is also very useful in conjunction with the SUMIF
command for finding the average of a group of
nodes. If the search values are numeric, then a
user may also determine the number of entries
that are greater or less than a specified value.
This could be used to find the number of nodes
whose margin or deviation was greater than a
specified value. COUNTBLANK determines the
number of blank cells in the specified range and
has the following syntax: COUNTBLANK(
SearchRange).
 A B C D

1 Submodel Node T(1) T(2)
2 SUB1 SUB1.1 25.2 26.0
3 SUB1 SUB1.2 26.7 27.0
4 SUB1 SUB1.3 31.8 31.8
5 SUB2 SUB2.1 29.6 29.7
6 SUB2 SUB2.2 50.2 52.0

Sample Data 3
=SUMIF(A2:A6,”SUB1”,C2:C6) yields 83.7
=COUNTIF(A2:A6,”SUB1”) yields 3
=COUNTIF(C2:C6,”>” & C5) yields 2
=SUMIF(A2:A6,”SUB1”,C2:C6)/COUNTIF(A2:
A6,”SUB1”) yields 27.9

MATCH and INDEX

While the SUMIF function is useful for returning
numeric values, it cannot return a non-numeric
value. For this, the combination of MATCH and
INDEX is best. MATCH searches for a specified
value in a specified range and returns the index
location of the first value found that matches the
SearchValue. MATCH has the following syntax:
MATCH(SearchValue, SearchRange, 0) with the
0 indicating to match SearchValue exactly.
INDEX is used to return a value at a specified
location in the specified range. Its syntax is as
follows: INDEX(ReturnRange, IndexLocation)

While the VLOOKUP (or HLOOKUP) function
may also be used, they impose a limitation in
that the SearchRange must be before the return
range. Therefore, they could not be used with
the data in the order presented above. These
commands are useful for returning text
information associated with a particular node,

such as telemetry mnemonic, description,
submodel, etc.)

 A B C D

1 Description Node T(1) T(2)
2 Motor SUB1.1 25.2 26.0
3 Shaft SUB1.2 26.7 27.0
4 Mirror SUB1.3 31.8 31.8
5 Housing SUB2.1 29.6 29.7
6 Baseplate SUB2.2 50.2 52.0

Sample Data 4
=MATCH(“SUB1.2”,B2:B6,0) yields 2
=INDEX(A2:A6, MATCH(“SUB1.2”,B2:B6,0))
yields “Shaft”

LINEST and TREND

The LINEST and TREND function perform a
least squares fit to a set of data. LINEST has
the following syntax: LINEST(known_ys,
known_xs, const, stats). Typically, a user
should enter TRUE for const and FALSE for
stats to indicate that the y-intercept value is non-
zero and that additional statistics are not
needed. The returned result is an array with one
more value than the number of independent
variables. Therefore, to fit for a fourth order
polynomial, the user should have columns of X,
X2, X3, and X4 and enter these four columns as
the known_xs. The returned array will have five
entries, each of which can be accessed using
the INDEX function (described earlier). The first
index is the coefficient for the curve fit for the
first X variable, the second corresponds to the
second X variable, and so on. The last index
corresponds to the y-intercept.

TREND takes the LINEST capability one step
further and returns the calculated value for the
input new_xs specified by the user. The syntax
is as follows: TREND(known_ys, known_xs,
new_xs, const). One caution with the TREND
function is the need to enter a value for each
independent new_x value. Therefore, to predict
the Y value for a fourth order polynomial at an X
value of 2, new_x values of 2, 4, 8, and 16
would need to be entered.

INDIRECT

Perhaps the most powerful EXCEL function is
the INDIRECT function. This function allows a
user to specify a range as a text string and then
converts that string to a range to be used
further. The syntax is as follows: INDIRECT(
CellAddress, TRUE) for A1 reference style or
INDIRECT(CellAddress, FALSE) for the Row-

- 4 of 6 -

Column (R1C1) reference style. Combining
INDIRECT with the above commands allows a
user to change Source Worksheets, Rows or
Columns referenced in other formulas simply by
changing cells on other sheets, as shown in the
examples below.

Temp A B C D

1 Description Node T(1) T(2)
2 Motor SUB1.1 25.2 26.0
3 Shaft SUB1.2 26.7 27.0
4 Mirror SUB1.3 31.8 31.8
5 Housing SUB2.1 29.6 29.7
6 Baseplate SUB2.2 50.2 52.0

Heat A B C D
1 Description Node Q(1) Q(2)
2 Motor SUB1.1 2.5 2.5
3 Shaft SUB1.2 2.5 2.5
4 Mirror SUB1.3 3.5 3.5
5 Housing SUB2.1 1.71 1.75
6 Baseplate SUB2.2 1.63 1.67

Calc A B C D

1 Sheet Heat
2 Row 3
3 Column 4
4 Node SUB1.3
5 Heading T(1)

Sample Data 5

=INDIRECT(“’Temp’!R” & B2 & “C” & B3,FALSE) yields
27.0
=INDIRECT(“’Heat’!R” & B2 & “C” & B3,FALSE) yields 2.5
=INDIRECT(B1 & “!R” & B2 & “C” & B3,FALSE) yields 2.5
=MATCH(B4,’Temp’!A1:A65536) yields 4
=MATCH(B5,’Temp’!A1:IV1) yields 3
=INDIRECT(“’” & B1 & “’!R” & MATCH(B4, ’Temp’! A1:
A65536) & “C” & MATCH(B5, ’Temp’!A1:IV1) yields 3.5

Changing cell B1 to Temp, would yield 31.8 for
the above formula. Changing cell B4 to SUB2.2
and cell B5 to T(2) would then yield 52.0. With
this formula, a user has complete control over
the worksheet, row and column from which to
retrieve data.
Further power can be realized in that the
INDIRECT command may be used within a
SUMIF or other functions. The following formula
would allow a user to retrieve data for the
SUB2.1 node from the worksheet specified in
cell B1.

=SUMIF(INDIRECT(“’” & B1 & “’!R1C2:R6C2”,FALSE),
“SUB2.1”, (“’” & B1 & “’!R1C3:R6C3”,FALSE))

VBA – Visual Basic for Applications

If a user needs functionality not already included
in the base set of Excel functions, Visual Basic
macros can be written to extend Excel’s
capabilities. VBA is an extension of the Visual
Basic programming language which includes
collections of objects specific to each
application. For Excel, the primary objects
available for use are Worksheets, Cells,
Ranges, Charts, and Series.

To access the data in Cell B1 on Worksheet
Temp, a user could use either of the following
syntaxes:

 Worksheets(“Temp”).Range(“B1”)
 Worksheets(“Temp”).Cells(1,2)

To access chart information, the syntax is:

Charts(Name or Index).SeriesCollection(SeriesIndex).

To retrieve the marker style for the second point
on the first series of Chart1, the syntax is:

Charts(“Chart1”).SeriesCollection(1).Points(2).MarkerStyle

Much of the syntax to perform Excel specific
actions can be found by recording a macro and
then examining the resulting VBA code in the
Visual Basic Editor. This capability can be
further extended by using the control/conditional
structures in VBA. VBA includes the following
variable types: variant, integer, long, string,
single, double, boolean and uses a syntax:

Dim <Variable Name> As <Variable Type>

For example, the following lines define I as an
integer type and InputStr as a string

Dim I As Integer
Dim InputStr As String

VBA also includes basic looping and conditional
statements, with the most common ones listed
below:

DO-WHILE

DO WHILE <condition>
 <code here>
LOOP

FOR-NEXT

FOR <variable> = <StartValue> to

<EndValue> Step <Increment>
 <code here>
NEXT <variable>

- 5 of 6 -

IF-THEN-ELSEIF-ELSE

IF <condition> THEN
 <code here>
ELSEIF <condition> THEN
 <code here>
ELSE
 <code here>
ENDIF

Some examples of useful functions include a
weighted average function or a function to find
the minimum or maximum over a range of data
where particular criteria must be satisfied (e.g.
submodel), like SUMIF or COUNTIF. Some
examples of useful subroutines include making
all charts have the same axes properties and
titles, making charts have markers every 10 data
points, or deleting all blank lines on a worksheet.
Using combinations of Excel objects properties
and methods and Visual Basic syntax and
capabilities, a user may extend the functionality
of Excel nearly endlessly.

MISCELLANEOUS CAPABILITIES

Additional capabilities are also available but are
not implemented as functions in Excel to be
used in formulas. Examples include conditional
formatting, image and text objects that may be
added to worksheets, and iterative solvers.
Conditional formatting allows the format of the
cell to be changed based on the value of the
cell. The general approach is to apply
formatting if the cell value is less than (greater
than, equal to, between, etc) the value of one or
more values. This capability can also be
extended by using formulas for the values
instead of simple cell references (e.g.
“=IF(ValueFound,10, -100)”)

Figure 1 – Conditional Formatting

Excel also allows a user to add text boxes to
images. While most users are aware of this,
they may not be aware that the text box may
reference a cell location and not necessarily a
fixed text value. To enable this, the user must
enter the Cell location preceeded by an equals
sign in the formula bar (e.g. =A1), NOT THE
TEXT BOX ITSELF. Since the values in the
referenced cells may be updated based on other
cells, this allows a user to change the values
displayed on the image, by changing the

controlling cell. For example, a user may add
numerous textboxes representing the
temperatures of various locations over an image
of a spacecraft component. These text boxes
may reference cells A2, A3, A4, etc.
Furthermore, Cells A2, A3, A4, etc may include
conditional IF statements in their formulas to
retrieve one set of data for Cold and a different
set of data for Hot depending on the value of
Cell A1. Therefore, by changing the value in
Cell A1, the text displayed over the image may
also be changed.

Another useful capability in Excel is the ability to
perform iterations to solve a linear or non-linear
equation or set of equations using: Goal Seek
and Solver. The Goal Seek is available in a
default installation; however the Solver must be
installed as add-in to access its functionality.
Goal Seek is best used for relatively simple, one
independent variable equations. The user
enters in the Cell containing the dependent
variable (Set Cell), the goal value (To), and the
cell containing the independent variable (By
Changing Cell). Goal Seek then attempts to find
the value of the independent variable that most
closely produces the specified value for the
dependent variable. Clearly, the formulas to
determine the dependent variable value must
reference the independent variable value.

Figure 2 – Goal Seek

The Solver extends this capability, allowing the
user to specify multiple independent variables as
well as constraints for each if needed.

Figure 3 – Solver Add-in

- 6 of 6 -

CONCLUSIONS

A number of Excel functions can allow a user to
quickly parse and retrieve information from data
on Worksheets. The functions discussed
include:

• MID, LEN, FIND, TEXT, &
• IF, ISERROR, ISBLANK, ISTEXT, ISNUMBER
• AND, OR, NOT
• SUMIF, COUNTIF, COUNTBLANK
• MATCH, INDEX
• LINEST, TREND
• INDIRECT

Use of the INDIRECT function can allow a user
to assemble formulas from input values for
Worksheet name, row and column.
Functionality can be further extended in Excel
using macros and the VBA programming
language. Lastly, additional capabilities such as
conditional formatting, text box linking, and Goal
Seek and Solver capabilities provide even more
methods for a user to accomplish their goals. If
further information is desired on any of the
functions presented herein, it is suggested to
consult the online help for Excel.

CONTACT

Hume Peabody
Thermal Modeling Solutions, LLC
tarpthermal@comcast.net

