THERMICA V4 Thermal Analysis software for Space Engineering

Timothée SORIANO

All the space you need

THERMICA V4

18th Annual Thermal and Fluids Analysis Workshop

Content

- Introduction
- The SYSTEMA V4 environment
 - Modeler
 - Trajectory
 - Kinematics
 - Processing

- The THERMICA Application
 - Nodal description
 - Radiation
 - Solar fluxes
 - Planet fluxes
 - Conduction

- SINDA/G Interface
- Post-processing
- What's coming next

[2] All the space you need

SYSTEMA Environment

Overview

- Description
 - SYSTEMA permits satellite system analyses with detailed applications intended for specialists (thermal, AOCS, power ...)
 - SYSTEMA embeds applications requiring: a 3D surface model of the spacecraft, the spacecraft mission, space environment models.
- History
 - System analysis software development with ESA and CNES for more than 15 years
 - Software distribution (THERMICA, DOSRAD ...) for more than 10 years
- THERMICA
 - First tool in Europe to propose Monte-Carlo ray tracing for REF, Sun and Planet fluxes (1988)
 - Became a complete thermal analysis software

SYSTEMA: an interdisciplinary tool suite

Overview

[4] All the space you need

A New Environment for Space Applications

- Goals of the New Environment
 - Gathering a large set of applications
 - Common geometry description, compatibility between applications
 - Common definition of trajectory, pointing and kinematics
 - Common use of visualization and pre / post processing tools
 - Integration of the applications based on a functional description
- Main principles
 - PC / Unix native
 - compliant with the standard engineer tools
 - Fully interactive
 - ✓up to date framework capabilities
 - Based on standard formats for interface
 - ✓ Step, XML, HDF5
 - CAD & FEM interface
 - ✓ for efficient model generation
 - Open for evolutions

Applications are plug-in packages

[5] All the space you need

SYSTEMA Framework

Main concepts

• The user interacts with a desktop where he can access to all the data (geometry, trajectory, kinematics, mission...) in parallel

[6] All the space you need

3D Modeler: Setting the Geometry

- Advanced Visualization Features
 - Easy 3D Manipulation
 - Standard mouse zoon, pan rotate actions
 - Fill 'all' or 'only selected'
 - Multi representations (wire frame, solid...)
 - Transparency & Lights orientation management
 - Multi-viewers and Models Management
 - Creation/Deletion, Resizing/Masking
 - Simultaneous point of view over a model
 - Several models can be opened
 - They can share viewports

[7] All the space you need

3D Modeler: Setting the Geometry (2)

- Multi way point construction
 - > 3D direct selection
 - > Manual edition
 - Virtual point using Helps items
 - ✓ Grids
 - Lines to create intersection points
 Curve centre with 3 points
 Middle of a segment

- Quick shape construction
 - Step-by-step interactive construction
 - ✓ by picking points
 - Smart construction points
 - height and width computed with projections if necessary

[8] All the space you need

SYSTEMA V4 3D Modeler: Setting the Geometry (3)

Import from CAD
 CAD Geometry is used as a layer

Model in

CATIA

[9] All the space you need

3D Modeler: Completing the Geometry

- Easy settings of the properties
 - > Inheritance management
 - > Material management
 - Definitions of "Activity" and "Side"
- Meshing & Numbering independent from the geometry
 - Meshing/Numbering provided by applications
 - Multi-meshing support for one model
 - Improved Numbering management

[10] All the space you need

Trajectory

 Customization of the trajectory Management of the Sun, Solar System planets and Moon ✓ Real ephemerids Creation of arcs ✓Keplerian ✓ Sun synchronous ✓Geo synchronous ✓Transfer orbits Import of any trajectory Using a simple file with definition of Time, Speed and Positions Advanced 3D visualizations ✓Zoom, rotate, pan ✓ Variable time scale

✓Play / Stop

[11] All the space you need

SYSTEMA Trajectory

Interplanetary mission

- 3D visualization of the trajectory
 The user can play/stop the trajectory
 Variable time scale
 - Zoom / Pan / Rotate interactivity

[12] All the space you need

Kinematics

Independent from the geometry
 Tree of rigid bodies linked by

 Pivot connection
 degree of freedom
 Ball pivot

 2 degrees of freedom

 Ball joint
 3 degrees of freedom

Definition of laws
 Pointing
 Sun, Planet, velocity, orbital momentum...
 Spin around axis
 ...
 Possibility of combining laws
 Fast-moving option available

[13] All the space you need

- Visualisation of the kinematics of bodies
- Animation for pointing validation

EADS

[14] All the space you need

Mission

- Build your Mission
 - Gather all data
 - ✓Geometry
 - ✓Trajectory
 - Kinematics
 - Link the model / kinematics
 - Set computation points
- Advanced 3D features
 - Planets and Sun <

[15] All the space you need

Mission

- 3D animation taking into account
 - Planet orbits
 - Spacecraft trajectory
 - Moving bodies

Possibility of exporting video
 Available in a near future

[16] All the space you need

Processing

- Interactive processing
 - > Sets the applications and their properties, their input/output files...
 - A processing schematics created
 - Any mission can be chosen
 - from this module
 - Results management

87.2%		
	23.6%	
>		
>		
> *************	******	
> Planets Flux	es Computation	
State 1 : Initi	alisation	
State 2 : Dia	netes Eluves Computation	
> Time position	n 0 (20990) - Sun constant : 1327 83	
> Time position	n 1 (20990) - Sun constant : 1327.84	
 Time position Time position Time position 	n 1 (20990) - Sun constant : 1327.84 n 2 (20990) - Sun constant : 1327.85	
 Time position Time position Time position Time position 	n 1 (20990) - Sun constant : 1327.84 n 2 (20990) - Sun constant : 1327.85 n 3 (20990) - Sun constant : 1327.87	
 Time position Time position Time position Time position Time position 	n 1 (20990) - Sun constant : 1327.84 n 2 (20990) - Sun constant : 1327.85 n 3 (20990) - Sun constant : 1327.87 n 4 (20990) - Sun constant : 1327.87	
 Time position Time position Time position Time position Time position Time position 	n 1 (20990) - Sun constant : 1327.84 n 2 (20990) - Sun constant : 1327.85 n 3 (20990) - Sun constant : 1327.87 n 4 (20990) - Sun constant : 1327.87 n 5 (20990) - Sun constant : 1327.87	
 Time position 	n 1 (20990) - Sun constant: 1327.84 n 2 (20990) - Sun constant: 1327.85 n 3 (20990) - Sun constant: 1327.87 n 4 (20990) - Sun constant: 1327.87 n 5 (20990) - Sun constant: 1327.87 n 6 (20990) - Sun constant: 1327.87	
 Time position 	n 1 (20990) - Sun constant : 1327.84 n 2 (20990) - Sun constant : 1327.85 n 3 (20990) - Sun constant : 1327.87 n 4 (20990) - Sun constant : 1327.87 n 5 (20990) - Sun constant : 1327.89 n 6 (20990) - Sun constant : 1327.89 n 7 (20990) - Sun constant : 1327.91	

[17] All the space you need

- Nodal method
 - Transformation of the geometrical problem into a network of nodes linked by radiation, conduction and with external conditions

$$\sum_{j} GL_{i,j} (T_{j} - T_{i}) + \sigma \sum_{j} GR_{i,j} (T_{j}^{4} - T_{i}^{4}) + P_{i} = MCp_{i} \frac{dT_{i}}{dt}$$

 Allows the use of a powerful temperature solver
 Additional modelling can be added to the network (non-geometrical nodes, heat controls, fluid loops...)

THERMICA V4 Radiation module

• Distribution of the Energy transmitted by a node

[19] All the space you need

THERMICA V4

Radiation module (2)

- Monte-Carlo Ray Tracing
 - Accounts for the true geometrical shapes
 - > Manages specular and diffusive reflection, transmission and refraction
 - Manages multi-reflection into the model
 - Handle shading effects

THERMICA V4

Solar fluxes computation

- A ray-tracing based computation
 - Search for highlight parts of the spacecraft
 - Takes into account planet penumbra effects
 - Propagate the sun incoming flux
 - Use the thermo-optical properties in the visible wavelength

[21] All the space you need

• Possibility of modelling a Sun at a finite distance

[22] All the space you need

THERMICA V4

Planet fluxes computation

- Based on the Radiation computation
 - > A virtual sphere located at infinity is meshed
 - Exchange factors are evaluated between each surface and each sphere element
 - > Radial projection of the sphere mesh to the planet
 - On-ground light ratio is computed for projected meshes

Conduction modelling

- Conduction problem
 - Usually requires a fine mesh for accuracy
 - ✓But we have to solve the temperature on one nodal network used for radiation, external fluxes and conduction
 - Need a temperature gradient
 - ✓ But radiative meshes are supposed to be isothermal
- Implemented method
 - Based on finite elements and Fourier's law integration
 - Manages all SYSTEMA shapes
 - Insure compatibility between radiation and conduction
 - ✓ Uses edge nodes to get temperature gradient

[24] All the space you need

• THERMICA outputs results in SINDA/G language

• A specific interface

- > Manages all the network files created
- > Automatically generates a Sinda/G input file
 - ✓ Customization of options, control parameters, solution routines

[25] All the space you need

THERMICA V4 Post-processing: Screenshots (1)

EADS

[26] All the space you need

THERMICA V4 Post-processing: Screenshots (2)

[27] All the space you need

THERMICA V4 Post-processing: Screenshots (3)

[28] All the space you need

THERMICA V4

What's coming next

- New GUI Environment (QT)
 - Even more interactivity
 - > Advanced viewport management
 - Improved visualization post-processing features
- Boolean cuts
 - > Available in the model builder and for all application modules
 - Advanced radiation module
 - Completely new conduction module
- Conduction module
 - Powerful volume elements based module
 - ✓Even more accurate
 - ✓ Handle boolean shapes and non-conformance

[29] All the space you need

THERMICA V4 is Now Available

- For more information
 - <u>http://www.systema.astrium.eads.net</u>
 - <u>http://www.sinda.com</u>

THERMICA class

> On Tuesday morning and afternoon, room 113

[30] All the space you need