

Thermal Cooling Design of an Electronic Component using Coupled Conduction, Three Dimensional Convection (CFD), and Radiation Heat

Transfer Finite Element

Venkatacha Parameswaran Boeing 3370 Miraloma Av, Anaheim, CA 92806

Abstract

- This paper attempts to explain the concurrent thermal design of an electronic component assembly, involving coupled conduction convection, and radiation analysis
- I-DEAS/TMG/ESC software is used to demonstrate the technique

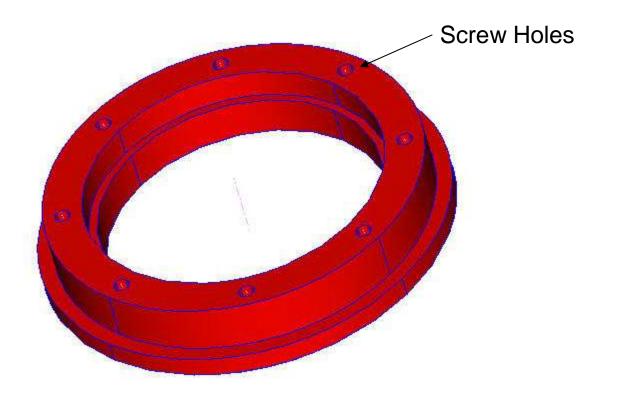
- In concurrent engineering, various engineering disciplines work together in unison to come up with an optimum design
- This eliminates redesigns and waste.
- Generally designs are created and owned by mechanical design organizations based on compromises among various engineering disciplines

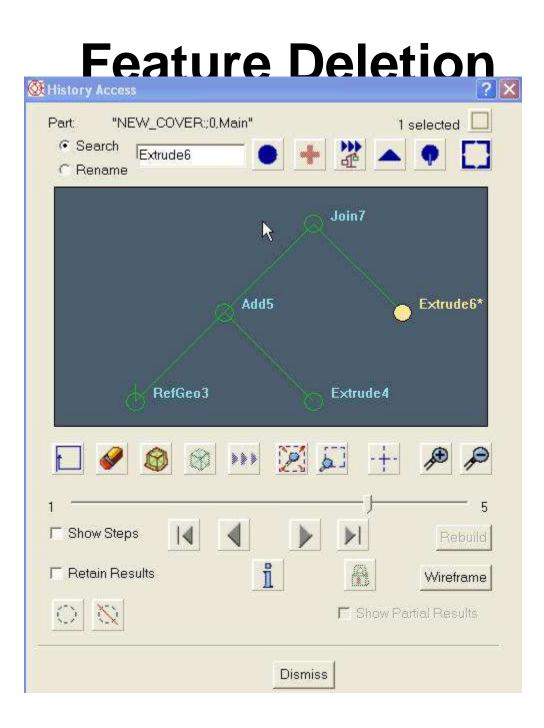
Implementation

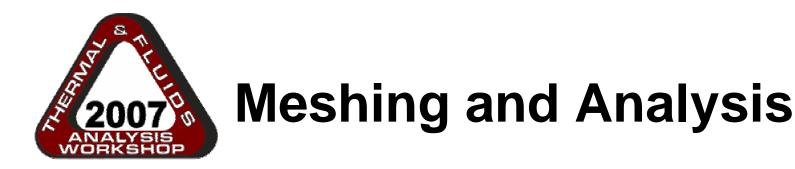
- Designs are assemblies, sub-assemblies, or LRUs, and parts created in a CAD design tool
- This is then imported into the analysis tool suite
- Only parts, sub-assemblies that are deemed to be important for thermal analysis are selected
- Such parts can be selected by the use of prune features in IDEAS from the assembly hierarchy
- This involves the use of assembly tree structure

Parts Selection

Hierarchy ? Selected 0 V 11 X -= FAB-T 7.17.06 ~ *0 Yoke Assembly Yoke Weldment Bearing doubler plate (Pruned-Local) HD Tube Part2 (Pruned-Local) Part3 (Pruned-Local) Part4 (Pruned-Local) Part5 (Pruned-Local) Part6 (Pruned-Local) Part5 (Pruned-Local) Part7 (Pruned-Local) HD Tube (Pruned-Local) Part8 (Pruned-Local) Part9 (Pruned-Local) 808 100 COM COM Part4 (Pruned-Local) Part7 (Pruned-Local) Part10 (Pruned-Local) Part6 (Pruned-Local) Part9 (Pruned-Local) i 40 Acuator 2381 SP & Pinion (Pruned-Local).... 12 X Deselect/Dismiss Dismiss <>




Idealized part


- After parts are selected unwanted featured are removed
- Chamfers, holes, fillets and minor details are removed

Part Features

- The parts are then meshed, checked and all the FEMs are combined
- Analysis is run, results examined
- If it does not meet requirements, modifications made and re-run and recommendations provided

Solution

- Most thermal involves conduction, convection, and radiation.
- In many problems use of most commonly used empirical correlations for convection are inadequate
- Flow field may be complex and can not be approximated by one dimensional flow field
- Thus use of empirical correlations may yield incorrect results

Governing Equations

- 3-D Transport equations in fluid:
 - Energy $\partial(\rho h) / \partial t + \partial(\rho U_j h) / \partial x_j = \partial(k/C_p \partial(T) / \partial x_j \rho u_j h') / \partial x_j + S_h$
 - Momentum $\partial(\rho h) / \partial t + \partial(\rho U_j h) / \partial x_j = \partial(\mu \{\partial U_i / \partial x_{j+} \partial U_j / \partial x_i\} \rho u_i u_i) / \partial x_j + S_{Uj}$
 - Mass conservation $\partial \rho / \partial t + \partial \rho U_i / \partial x_i = S$
 - Turbulence k-e Model with wall function
 - The above are integrated over a finite control volume and difference equations are obtained at various volume centers.
 - Requires boundary conditions of surface temperature or flux, which is unknown to be obtained from conduction solution

- Conduction Equation:
 - $$\begin{split} &-\partial(\rho C \rho T)/\partial t = q + (\partial/\partial x (k\partial T/\partial x) + \partial/\partial y (k\partial T/\partial y) + \\ &\partial/\partial z (k\partial T/\partial z)) \end{split}$$
- Boundary Condition: Radiation, Convection
 - Radiation defined in terms of a view-factor, emissivity, and enclosure temperature
 - Convection in terms of a heat transfer coefficient, and fluid temperature, which is unknown and has to be obtained from solution of transport equations

Turbulence

- The turbulence quantities are related as follows:
 - Momentum $\rho \underline{u}_{i} \underline{u}_{j} = \mu_{t} (\partial U_{j} / \partial x_{j} + \partial U_{j} / \partial x_{i})$
 - Energy $\rho \underline{u_i} \underline{h'} = \mu_t / Pr_t (\partial T / \partial x_j)$
 - Viscosity $\mu_t = C_{\mu}k/\epsilon$

Wall Relationship

- Near wall relationship
 - $y^{+} = \rho u_{*} y / \mu, \tau_{w} = \rho u_{*}^{2}$
 - Log law $u^+ = u_f / u^* = 1/\kappa \log(y^+ E)$
 - The above defines wall shear
 - The wall flux $q_w = k(T_w T_f)/y_f$
 - Defining T⁺ = $\rho C_p u^* (T_w T_f) / q_w$, R=Pr y⁺, Tau=0.01(Pr y⁺)⁴ /(1+5 Pr³ y⁺)
 - $-T^{+} = Re^{-Tau} + (1/\kappa \log R + C)e^{-Tau}$

Wall Relationship

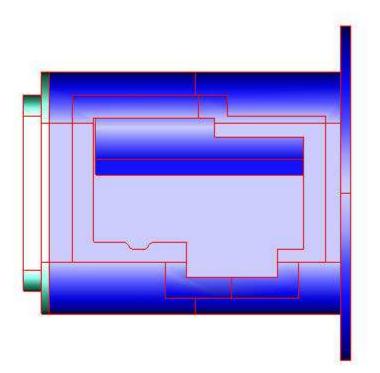
• Van Driest damping factor is used for nodes close to the wall

Boundary Condition

- For an infinitesimal control volume around the solid/liquid interface the energy flux should balance
- Q = kdT/dn (solid) = KdT/dn(Liquid)
- The above formulation couples the conduction convection transport and generally written as h(Tw – Tf), where Tw is the surface temperature and Tf the fluid temperature

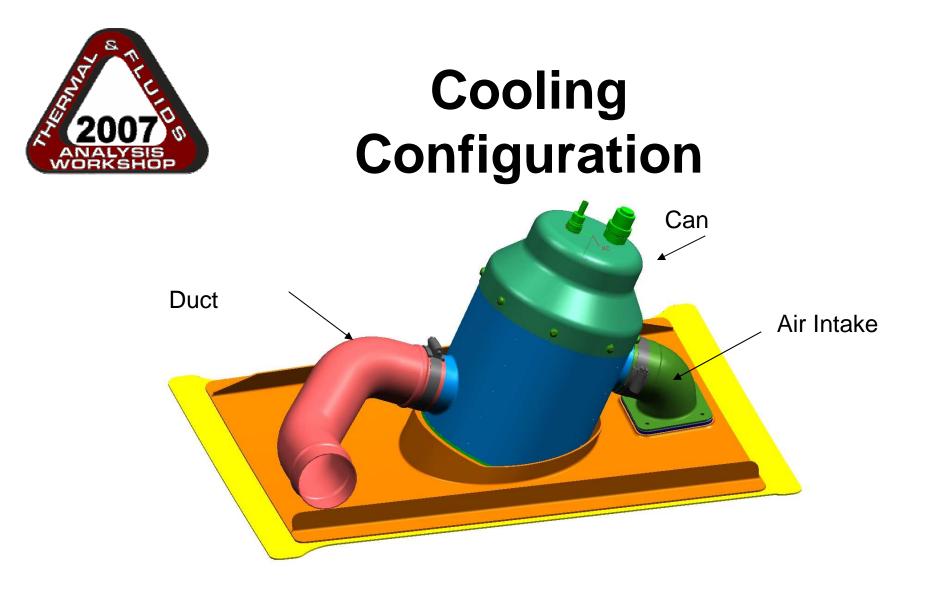
Example

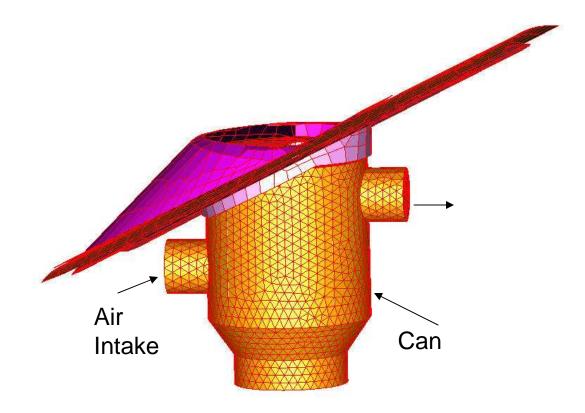
- The following examples demonstrates the principle
- It does not represent any real component, used for illustration only



Result

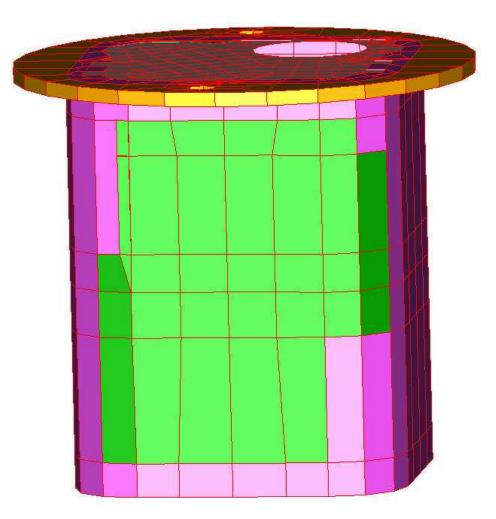
- Helps designing the air intake, outlet for optimum performance
- Automatically calculates the heat transfer without relying on empirical formulation


Component

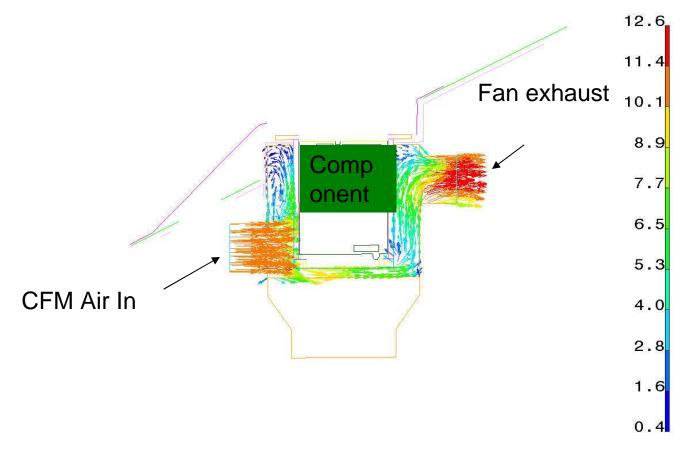


Challenges in Design

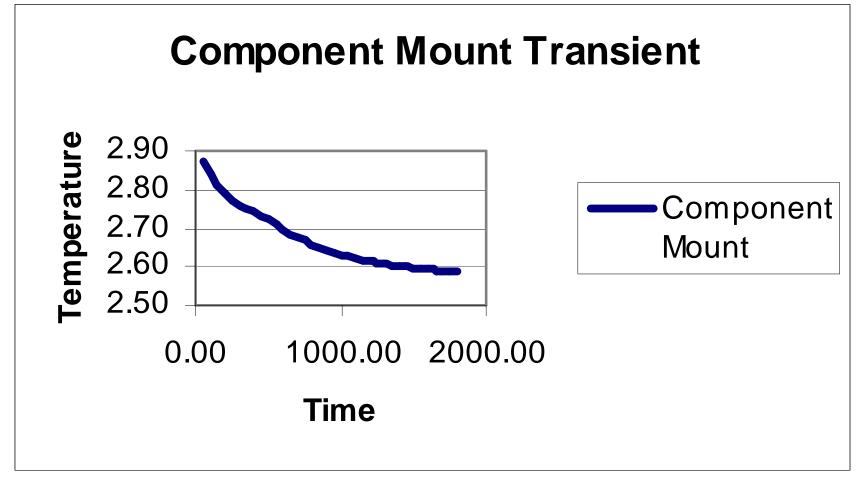
- Component has parts dissipating heat at various locations
- Subjected to solar load
- Internal air convection whose temperature distribution is unknown
- External air convection with a known temperature
- Sensor should cool to a mount temperature < required limit
- Low DT






FE Meshing

Air Flow in the Can


Velocity

Design Issues

- Space constraints
- Weight
- Fan
- Placement of inlet and outlet
- Reliability, availability, maintenance
- Baffling in the can
- Environments

Conclusion

 Concurrent thermal design of component, parts, assemblies and sub-assemblies, and large assemblies can be very effectively performed using I-DEAS/TMG/ESC tool suite