Thermal Capacitance (Slug) Calorimeter Theory including Heat Losses and other Decaying Processes

T. Mark Hightower and Ricardo A. Olivares
NASA Ames Research Center, Moffett Field, CA 94035

Daniel Philippidis
San Jose State University, San Jose, CA 95192

Thermal and Fluids Analysis Workshop 2008
San Jose State University, San Jose, CA
Presented: August 18, 2008
Outline

- Arc jet description
- Slug calorimeter description
- Issue of heat losses from slug calorimeter cited in literature
- Idealized slug calorimeter theory – no losses and constant physical properties
- General slug calorimeter theory – with losses and variable heat capacity – Slug Loss Model
- Slug Loss Model applied to slug calorimeter data from one arc jet run
- Finite Element Analysis (FEA) model of slug calorimeter data from same arc jet run
- Comparison of all models
- Conclusions
Arc jet description

Reentry Flight Environment
100 cm Diameter Nose Cap
On a Reusable Vehicle

Arc Jet Facility Simulation

25x25 cm Test Body in the Arc Jet Plasma Stream
Slug calorimeter description

Schematic of a Thermal Capacitance (Slug) Calorimeter
Slug calorimeter description

Typical Temperature—Time Curve for Slug Calorimeter

\[q = \frac{M c_p}{A} \frac{\Delta T_b}{\Delta t} = L \rho c_p \frac{\Delta T_b}{\Delta t} \]
Slug calorimeter description

Time Curve when heat & other losses are significant during heating phase
“The heat losses are usually hard to control in models with high-heat-flux conditions.”

“If more accurate results are required, the losses through the insulation layer should be modelled and accounted for by a correction term . . .”

Idealized slug calorimeter theory

- Right circular cylinder made of copper
- Insulated at back face & around circumferential area
- Slug initially at uniform temperature
- Starting at time $t = 0$, constant heat flux q is applied to front face
- Coordinate x defined as zero at front face and L at back face
- Problem can be modeled as one dimensional unsteady state heat transfer
- Additional simplifying assumption: all physical properties are constant with temperature
Boundary value problem

PDE for one dimensional unsteady state heat transfer

\[\frac{\partial^2 T}{\partial x^2} = \frac{\rho c_p}{k} \frac{\partial T}{\partial t} \]

Definition of thermal diffusivity

\[\alpha = \frac{k}{\rho c_p} \]

Boundary conditions

\[\frac{\partial T(0,t)}{\partial x} = -\frac{q}{k} \]
\[\frac{\partial T(L,t)}{\partial x} = 0 \]

Initial condition

\[T(x,0) = T_o \]
Solution to PDE boundary value problem

Overall solution = steady state solution + transient solution

\[T(x,t) = v_{ss}(x,t) + w(x,t) \]

\[v_{ss}(x,t) = T_o + \frac{qt}{L\rho c_p} + \frac{qL}{3k} + \frac{qx^2}{2Lk} - \frac{qx}{k} \]

\[\frac{\partial T(x,t)}{\partial t} = \text{constant} \]

\[w(x,t) = -2qL \sum_{n=1}^{\infty} \frac{1}{n^2} \cos \left(\frac{n\pi x}{L} \right) e^{-\alpha \left(\frac{n\pi}{L} \right)^2 t} \]

\[T(x,t) = \left(T_o + \frac{qt}{L\rho c_p} + \frac{qL}{3k} + \frac{qx^2}{2Lk} - \frac{qx}{k} \right) - 2qL \sum_{n=1}^{\infty} \frac{1}{n^2} \cos \left(\frac{n\pi x}{L} \right) e^{-\alpha \left(\frac{n\pi}{L} \right)^2 t} \]
Animation of solution for copper slug
L= 1 cm, q= 2600 W/cm², elapsed t= 0.3 s

Steady state solution

Response slowed down by a factor of 33
Animation of solution for copper slug
$L = 1 \text{ cm}, q = 2600 \text{ W/cm}^2$, elapsed $t = 0.3 \text{ s}$

Transient solution

Response slowed down by a factor of 33
Animation of solution for copper slug
L = 1 cm, q = 2600 W/cm², elapsed t = 0.3 s

Overall solution

Response slowed down by a factor of 33
Setting $q_{\text{indicated}} = 0$ gives time for the heat to have just penetrated to the back side of the slug.

For practical purposes, the response time calculated when $q_{\text{indicated}}/q_{\text{input}} = 0.99$ should be sufficient elapsed time for the heat flux determination from the back face temperature to begin to be valid, and implies steady state.

$$t_R = \frac{L^2}{\alpha \pi^2} \ln \left(\frac{2}{1 - \frac{q_{\text{indicated}}}{q_{\text{input}}}} \right)$$

$$t_{R0.99} = \frac{L^2}{\alpha \pi^2} \ln \left(\frac{2}{1 - 0.99} \right)$$
Other useful equations

\[T_b = T(L, t) = T_o + \frac{q\alpha t}{kL} - \frac{1}{6} \frac{qL}{k} - \frac{2qL}{k\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} e^{-\alpha \left(\frac{n\pi}{L}\right)^2 t} \]

\[T_f = T(0, t) = T_o + \frac{q\alpha t}{kL} + \frac{1}{3} \frac{qL}{k} - \frac{2qL}{k\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} e^{-\alpha \left(\frac{n\pi}{L}\right)^2 t} \]

\[T_{ave} = T_o + \frac{q\alpha t}{kL} \]

\[T_f - T_b = \frac{1}{2} \frac{qL}{k} - \frac{4qL}{k\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} e^{-\alpha \left(\frac{(2n-1)\pi}{L}\right)^2 t} \]

\[T_{ave} - T_b = \frac{1}{6} \frac{qL}{k} + \frac{2qL}{k\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} e^{-\alpha \left(\frac{n\pi}{L}\right)^2 t} \]
Summation terms approach zero with steady state

\[T_b = T(L, t) = T_o + \frac{q \alpha t}{kL} - \frac{1}{6} \frac{qL}{k} \]

\[T_f = T(0, t) = T_o + \frac{q \alpha t}{kL} + \frac{1}{3} \frac{qL}{k} \]

\[T_{ave} = T_o + \frac{q \alpha t}{kL} \]

\[T_f - T_b = \frac{1}{2} \frac{qL}{k} \]

\[T_{ave} - T_b = \frac{1}{6} \frac{qL}{k} \]
A heat balance on the slug with losses gives

\[\text{input} - \text{output} (i.e. \text{losses}) = \text{accumulation} \]

\[
qA - \frac{(T_{ave} - T_o)}{R_{la}} = Mc_{po} \frac{dT_{ave}}{dt}
\]

\[
T_{ave} = T_b + \frac{qL}{6k}
\]

Getting equation in terms of \(T_b \)

\[
\left(q \left(\frac{A}{Mc_{po}} - \frac{L}{6kR_{la}Mc_{po}} \right) + \frac{T_o}{R_{la}Mc_{po}} \right) - \frac{T_b}{R_{la}Mc_{po}} = \frac{dT_b}{dt}
\]
Defining two constants

\[
a = \left(q \left(\frac{A}{Mc_{po}} - \frac{L}{6kR_{la}Mc_{po}} \right) + \frac{T_o}{R_{la}Mc_{po}} \right)
\]

\[
b = \frac{1}{R_{la}Mc_{po}}
\]

Differential equation can be written as

\[
a - bT_b = \frac{dT_b}{dt}
\]

Which integrates to

\[
T_b = \left(T_{b1 \text{ fit}} - \frac{a}{b} \right) e^{-b(t-t_1)} + \frac{a}{b}
\]
Accounting for heat losses – Slug Loss Model

Once data is fit to this

\[T_b = \left(T_{b1_{\text{fit}}} - \frac{a}{b} \right) e^{-b(t-t_1)} + \frac{a}{b} \]

Rearrange this

\[
a = \left(q \left[\frac{A}{M_{cpo}} - \frac{L}{6kR_{la}M_{cpo}} \right] + \frac{T_o}{R_{la}M_{cpo}} \right)
\]

\[b = \frac{1}{R_{la}M_{cpo}} \]

To solve for \(q \)

\[
q = \frac{M_{cpo}}{A} \left(\frac{a - bT_o}{1 - \frac{L}{6kR_{la}A}} \right)
\]
Once you have this fit

\[T_b(t) = \left(T_{b1\text{ fit}} - \frac{a}{b} \right) e^{-b(t-t_1)} + \frac{a}{b} \]

By this equation

\[T_{ave} = T_b + \frac{qL}{6k} \]

you also have

\[T_{ave}(t) = \left(\left(T_{b1\text{ fit}} - \frac{a}{b} \right) e^{-b(t-t_1)} + \frac{a}{b} \right) + \frac{qL}{6k} \]

and

\[\frac{dT_b(t)}{dt} = \frac{dT_{ave}(t)}{dt} = -b \left(T_{b1\text{ fit}} - \frac{a}{b} \right) e^{-b(t-t_1)} \]

All analytical expressions
Accounting for heat losses – Slug Loss Model

Now write energy balance equation with actual loss resistance and variable heat capacity

\[qA - \frac{(T_{ave}(t) - T_o)}{R_l} = Mc_p(T_{ave}(t)) \frac{dT_{ave}(t)}{dt} \]

Variable heat capacity with \(T \) is obtained from the Shomate equation for copper

\[c_p(T_{ave}) = A + BT_{ave} + CT_{ave}^2 + DT_{ave}^3 + \frac{E}{T_{ave}^2} \]

where

\[A = 2.789933 \times 10^2 \ \frac{J}{kgK} \quad B = 4.421789 \times 10^{-1} \ \frac{J}{kgK^2} \]

\[C = -4.918152 \times 10^{-4} \ \frac{J}{kgK^3} \quad D = 2.19879 x 10^{-7} \ \frac{J}{kgK^4} \]

\[E = 1.079706 \times 10^6 \ \frac{JK}{kg} \]
Accounting for heat losses – Slug Loss Model

Solve energy balance equation for R_l, the actual loss resistance

\[
R_l(t) = \frac{(T_{\text{ave}}(t) - T_o)}{qA - Mc_p(T_{\text{ave}}(t))} \frac{dT_{\text{ave}}(t)}{dt}
\]

Other useful equations

\[
q_{\text{slope}Tb}(t) = \frac{Mc_p(T_b(t))}{A} \frac{dT_b(t)}{dt}
\]

\[
q_{\text{slope}Tave}(t) = \frac{Mc_p(T_{\text{ave}}(t))}{A} \frac{dT_{\text{ave}}(t)}{dt}
\]

\[
q_{\text{loss}}(t) = q - q_{\text{slope}Tave}(t) = q - \frac{Mc_p(T_{\text{ave}}(t))}{A} \frac{dT_{\text{ave}}(t)}{dt}
\]

\[
\text{FracLoss}(t) = 1 - \frac{Mc_p(T_{\text{ave}}(t))}{qA} \frac{dT_{\text{ave}}(t)}{dt}
\]
Slug Loss Model (SLM) applied to one arc jet run (IHF187R025)

Back Face Temperature & Stagnation Pressure versus Time.
SLM applied to one arc jet run (IHF187R025)

\[
\rho = 8,925.7 \, \frac{\text{kg}}{\text{m}^3} \quad c_{po} = 385.615 \, \frac{\text{J}}{\text{kgK}} \quad k = 385.2 \, \frac{\text{W}}{\text{mK}}
\]

\[
M = 0.004529 \, \text{kg} \quad D = 0.00781 \, \text{m}
\]

\[
A = 0.25 \pi D^2 = 0.000047906 \, \text{m}^2
\]

\[
L = \frac{M}{\rho A} = 0.010592 \, \text{m}
\]

\[
t_{R0.99} = \frac{\rho c_{po} L^2}{k \pi^2} \ln \left(\frac{2}{1 - 0.99} \right) = 0.538 \, \text{s}
\]
SLM applied to one arc jet run (IHF187R025)

Back Face Temperature & Stagnation Pressure versus Time.
Back Face Temperature versus Time data from t_1 to t_2.

<table>
<thead>
<tr>
<th>t, s</th>
<th>T_b, K</th>
<th>t, s</th>
<th>T_b, K</th>
<th>t, s</th>
<th>T_b, K</th>
<th>t, s</th>
<th>T_b, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>326.532</td>
<td>660.7955</td>
<td>326.682</td>
<td>744.1884</td>
<td>326.832</td>
<td>825.295</td>
<td>326.983</td>
<td>903.1487</td>
</tr>
<tr>
<td>326.547</td>
<td>668.8717</td>
<td>326.697</td>
<td>752.7801</td>
<td>326.847</td>
<td>833.1806</td>
<td>326.997</td>
<td>909.7945</td>
</tr>
<tr>
<td>326.562</td>
<td>677.0599</td>
<td>326.712</td>
<td>760.8678</td>
<td>326.862</td>
<td>841.5302</td>
<td>327.012</td>
<td>917.442</td>
</tr>
<tr>
<td>326.577</td>
<td>686.4049</td>
<td>326.727</td>
<td>768.6463</td>
<td>326.877</td>
<td>848.8967</td>
<td>327.027</td>
<td>925.1961</td>
</tr>
<tr>
<td>326.592</td>
<td>694.5348</td>
<td>326.742</td>
<td>777.3664</td>
<td>326.892</td>
<td>856.1385</td>
<td>327.042</td>
<td>932.1872</td>
</tr>
<tr>
<td>326.608</td>
<td>703.5074</td>
<td>326.757</td>
<td>785.3169</td>
<td>326.907</td>
<td>864.8431</td>
<td>327.057</td>
<td>939.6873</td>
</tr>
<tr>
<td>326.622</td>
<td>711.217</td>
<td>326.773</td>
<td>794.0334</td>
<td>326.922</td>
<td>872.3267</td>
<td>327.072</td>
<td>947.399</td>
</tr>
<tr>
<td>326.637</td>
<td>719.5663</td>
<td>326.787</td>
<td>801.3908</td>
<td>326.937</td>
<td>879.3349</td>
<td>327.087</td>
<td>954.5518</td>
</tr>
<tr>
<td>326.652</td>
<td>728.1516</td>
<td>326.802</td>
<td>809.1195</td>
<td>326.952</td>
<td>887.2804</td>
<td>327.102</td>
<td>961.6053</td>
</tr>
<tr>
<td>326.667</td>
<td>736.1388</td>
<td>326.818</td>
<td>818.2387</td>
<td>326.967</td>
<td>895.0791</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fit to this equation

$$T_b(t) = \left(T_{b1fit} - \frac{a}{b} \right) e^{-b(t-t_1)} + \frac{a}{b}$$
SLM applied to one arc jet run (IHF187R025)

Fitting this data to Slug Loss Model equation gives the best linear fit to T_b versus $e^{-b(t-t_1)}$ when $b = 0.29160 \text{ s}^{-1}$, where the R^2 value of the fit is maximized at 0.99999. The Solver function in an Excel spreadsheet was used to solve for b.

$$a = \text{intercept}\left(T_b \text{ vs } e^{-b(t-t_1)}\right)b = 766.76 \frac{K}{s}$$

$$T_{b1,\text{fit}} = \text{slope}\left(T_b \text{ vs } e^{-b(t-t_1)}\right) + \frac{a}{b} = 660.32 \text{ K}$$
\[R_{la} = \frac{1}{bM \rho_{po}} = 1.964 \frac{K}{W} \]

\[q = \frac{M \rho_{po}}{A} \left(\frac{a - bT_o}{1 - \frac{L}{6kR_{la}A}} \right) = 26,005,000 \frac{W}{m^2} = 2,600 \frac{W}{cm^2} \]

This value is about 15% higher than the value of 2,250 W/cm² reported by the facility test engineers, where losses were not taken into account.
SLM applied to one arc jet run (IHF187R025)

Back Face Temperature – Fit Compared to Data.
SLM applied to one arc jet run (IHF187R025)

Fit Compared to straight line.
SLM applied to one arc jet run (IHF187R025)

Losses (per cm2 slug frontal area) versus Time.

![Graph showing losses versus time with q_loss and Fraction Losses plotted against time in seconds.](image-url)
Actual Loss Resistance versus Time.
Animation of a 4” Hemi Slug Calorimeter
FEA Model

- A simple FEA model was created using COMSOL Multiphysics, COMSOL, Inc, Burlington, Massachusetts.
- The slug was modeled using 3D tetrahedral elements.
- Heat flux is applied to the top face using a smoothed Heaviside function (flc2hs) to create a ramp up and ramp down time.
- Losses occur through 0.6 mm diameter surface regions with a constant heat transfer coefficient h, to a constant holder temperature T_0.
- The material copper is used using temperature dependent properties of heat capacity and thermal conductivity.
- 3 second simulation time with a 0.01 second time step.
FEA Model

\[q_{\text{input}} \quad q_{\text{loss}} = h(T-T_0) \]
FEA Model

- Various runs were performed by varying q_{input}, h and the duration of the pulse in order to match the data.
- A unique solution of $q_{\text{input}} = 2,600 \text{ W/cm}^2$ was found where the COMSOL solution closely agreed with the actual data. Sensitivity analysis showed this q value to be determinable to +/- 1%.
- A fringe plot of the temperature at $t = 3$ seconds was plotted to show the paths of the heat flow.
- Temperature was plotted versus time for the centers of the front and back faces of the slug.
Adjusting the results to actual data
FEA Model

Temperature vs Time

- Front Face
- Back Face
COMSOL model with $q = 2600 \text{ W/cm}^2$ and actual data compared.
COMSOL model with $q = 2600 \text{ W/cm}^2$ and actual data compared
Ideal PDE & COMSOL No Loss Const Phys Props

COMSOL VS Ideal PDE Comparison

Time (s)

Ideal PDE Solution
COMSOL Constant k & Cp
% Difference
Ideal PDE & COMSOL No Loss Const Phys Props

The graph shows the temperature (T_b) over time (t) for two different cases:

- **Ideal PDESoln Perf Step** (light blue line)
- **No Loss Const Phys Props** (dark blue line)

The x-axis represents time (t, s) ranging from 0 to 3, and the y-axis represents temperature (T_b, K) ranging from 100 to 1500.
COMSOL No Loss Const Phys Prop compared to Loss Const Phys Prop & No Loss Var. Phys Prop
Loss Const Phys Prop & No Loss Var. Phys Prop compared to COMSOL Loss Var. Phys Prop

![Graph showing temperature vs time for different conditions.](image)
COMSOL Loss Var. Phys Prop compared to Slug Loss Model

![Graph showing comparison between Loss Var Phys Props and Slug Loss Model over time (t, s) and temperature (T, K).]
All Six cases

Graph showing temperature T, K, over time t, s for different cases:
- Ideal PDE Soln Perf Step
- No Loss Const Phys Props
- No Loss Var Phys Props
- Loss Const Phys Props
- Loss Var Phys Props
- Slug Loss Model
Conclusions

- A mathematical model, The Slug Loss Model, was developed, which takes into account losses, where the temperature time slope takes the mathematical form of exponential decay.
- The Slug Loss Model was applied to slug calorimeter data from a high heat flux arc jet run.
- A FEA Model was also developed and run for various cases.
- Good agreement was shown between the Slug Loss Model and the FEA Model.