Summary of Thermal Utility Programs
Available at Goddard Space Flight Center

Presented by Hume Peabody
Hume.L.Peabody@nasa.gov
(301) 286-9141

2008 Thermal and Fluids Analysis Workshop
San Jose State University in cooperation with NASA-AMES
Thermal Utility Programs

- **Geometry Input**
 - Geo_Info: *output various TSS surface properties (area, nodes, etc)*
 - Ren_Optics: *output TSS optics properties and make updates to both optics and geometry files*
 - TSS_Conv: *conversion between selected ASCII based geometry formats*

- **Geometry Output**
 - Radk_FUNC: *collection of Radk and HeatRate post processing functions*

- **Thermal Model Input**
 - TMM_Conv: *conversion between selected ASCII based thermal model formats*

- **Thermal Model Output**
 - Backload: *calculate backloads for selected nodes from temperature and radk output*
 - ThermPlot: *general post-processing program for thermal output*
 - Generate_T-XYZ: *find closest FEM node to geometry centroid and maps temperature for STOP analyses*
Disclaimer

• All programs developed to address specific need
 – Not developed to be robust and error free (i.e. not developed to be commercial software)
 – Have been developed and used successfully for years

• Tools may be provided as is
 – No support, expressed or implied, is included
 – Identified bugs will be corrected, but may not be considered high priority
 – No documentation exists (ThermPlot excepted)
Geo_Info
output various TSS surface properties (area, nodes, etc)

- Area Unit Conversion
- Sub-entity output
 - Nodal sub areas, activity, properties
Ren_Optics

output TSS optics properties and make updates to both optics and geometry files

- Rename specific properties
- Add prefix (to avoid duplicates)
- Check for, or remove, unused

- Make property tables
 - Optics (TSS, Desktop)
 - Materials (Desktop)

TFAWS 2008
Goddard Space Flight Center
Code 545 – Thermal Engineering Branch
TSS_Conv
conversion between selected ASCII based geometry formats

- Available conversions
 - TSS to ESARAD
 - TSS to Thermica
 - Esarad to TSS
 - Thermica to TSS
 - Esarad to Thermica
 - TSS to NEVADA
 - TMG to TSS

- Unit conversion

- Special cases
 - Solids to primitives
 - Torus breakdown
 - Polygons to triangles
 - Shorten entity names

Note: presented at 2002 TFAWS as “Use of TSS as a Neutral Format for Geometry Model Conversions: An Alternative to STEP-TAS”
Radk_Func

collection of Radk and HeatRate post processing functions

- Collection of utilities to post process RADK output
 - Renumber
 - Comment
 - Delete
 - Scale
 - Sum

- Can act on
 - All conductors
 - Conductors connected to
 - Conductor between

- Multiple sequential actions may be defined

- Some support for heatloads but not as mature
TMM_Conv
conversion between selected ASCII based thermal model formats

- Thermal Model Conversion
 - TAK2000 to SINDA
 - SINDA to ESATAN
 - ESATAN to SINDA

- Unit conversion
 - C, T, GL, GR, Q

- Renumbering
 - Nodes
 - Lin, Rad Conds
 - Arrays

- Variables
 - Convert names (shorten)
 - Replace with values
 - Replace with values and evaluate
Backloads

calculate backloads for selected nodes from temperature and radk output

- Backloads present a method for representing complex thermal environment for a surface/node as a simple heat load
- Requires Radk and Temperature Output
- May include env fluxes
 - Recommend separate IR & UV
- Numerous formats supported
- Output SS, TR or both
- Define conduction interfaces
- Include or exclude effects of other nodes in BL range (self view)
- Component file for validation

Note: application of backload usage presented at 2004 TFAWS as “Use of the Interface-Backload Method for Solving LISA and other Large, Divided Thermal Problems"
ThermPlot

general post-processing program for thermal output

- Generalized Post Processing Program
 - Data
 - Tables
 - Plots
 - Groups
 - HeatMaps

- Documentation Included
- No further updates planned

Note: presented at 2001 TFAWS as “Use of ThermPlot Software for Quick Evaluation of Thermal Model Results”
Generate_TXYZ
find closest FEM node to geometry centroid and maps temperature for STOP analyses

- Finds closest FEM node to TMM node for STOP mapping
- GMM
 - Revolves subdivided into segments to locate “centroid” near to surface
 - Options for double sided surfaces
 - Additional (non-geometric) centroids may be added
- TMM
 - Timestep selection
 - Dereference GMM node to TMM node (MLI mapping)
- FEM
 - Units and Coordinate System offsets
 - TMM node to FEM node override
- Output
 - Sorting
 - Multiple associations (>1 GMM nodes map to 1 FEM node)
Summary

• The described tools have not been developed to commercial levels
 – But they do expand the capabilities of existing tools

• Some of the features may be outdated, or have been reproduced or improved with later releases of various thermal codes
 – However, some of the capabilities remain unique (particularly the model conversion capabilities)

• The utilities are available to interested parties, but the source code remains under GSFC control