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Propellant Mean Bulk Temperature (PMBT)

• Solid Rocket Performance Is Highly Dependent on 
Propellant Temperature

• Our Task:  Predict The Pre-Launch                   
Temperature of the Orion Launch                                
Abort System Main Abort Motor

• Environment Inside the Motor                                    
Precludes Direct Sensing
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Propellant Mean Bulk Temperature (PMBT)

• External Case Temperature Sensors Available To Help 
Predict PMBT
– More Reliable Than Measuring Various Environment 

Conditions To Predict PMBT

– Must Account For Temperature Lag Between The Case And 
The PMBT

– Correlate System-Level Model Or Develop New PMBT 
Model

Sensors

Casing

Forward

Aft
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Two Modeling Approaches Compared

• Analytical Model

– Inputs: External Temperature History

– Provides:

• Bulk Temperature And Temperature Lag If Given Sufficient 

External Temperature History

• Insight To Allow Temperature Lag Estimation If Given Some 

External Temperature History

• System-Level Thermal Model

– Inputs: External Environment Data

– Provides:

• Bulk Temperature and Temperature Lag If Given Actual 

External Environments

• Temperature Lag Limits If Given Worst-Case External 

Environments
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Analytical Model Assumptions

• 1-Dim Radial Model Focuses On Three Materials

– Case, Insulation, and Propellant

– Neglect Axial Conduction Into/Out Of AM

– Neglect Contact Resistances Between Materials

– Neglect Heat Capacity of Case and Insulation

– Assume Sensor Temperature as Case OD Temperature

– Model Propellant As Hollow Circular Cylinder (Use Min ID of Grain, 
But Equate Mass Using Density Multiplier)

• Solve PMBT As Function Of Time History Of Sensor Temperature

• Solve Analytically In Excel And Implement in Thermal Desktop As 
A Check

Case

Insulation

Propellant

Sensor
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Analytical Solution

• Solution Steps, PMBT From External Temperature History 
– Set Tinit (Assumed Uniform) Equal To Initial Sensor Temperature

– Solve For PMBT Response To Unit Step External Temperature Change

– Solve Duhamel Superposition Using External Temperature History And 
PMBT Response To Unit Step External Temperature Change

– Use Sufficient History of Sensor Temperatures To Damp Initial Transient
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Analytical Solution, Unit Step Responses

• Series Solution Using Separation Of Variables

• Converges Well

– Best At Large t+ And Small r+

– Bulk Temperature Response Converges Even Better 
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Analytical Solution, Unit Step Responses, Cont.

• Series Solution Verified With Numerical Solution Obtained 

From Thermal Desktop

• 50 Terms Used, But Usually Only A Few Required

Series Solution (50 Terms) vs TD For Temperature Response 

To Unit Step External Temperature Change
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Series Solution (50 Terms) vs TD For Bulk Temperature 

Response to Unit Step External Temperature Change
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Analytical Solution, Duhamel Integral

• Input: External Temperature History

• Output: PMBT For Times Up To Last External Temperature 
Input

• Accuracy
– Depends On Replication Of True External Temperature History

– Requires Sufficient Time History To Dampen Initial Transient In Order To 
Negate Assumption Of Uniform Initial Temperature
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Analytical Solution, Ramp Test Case

• Convergence
– No problems With PMBT Response

– Temperature Response Problematic At Large (t+,r+), But Otherwise Good 

• Developing Temperature Lag
– Non-Dimensional Temperature Lag, 0.045648

– Non-Dimensional Time Constant ~(λ1+)-2, Using First-Term 
Approximation

Series Solution (50 Terms)* vs TD For Temperature Response 

To Unit Ramp External Temperature Change
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Series Solution (50 Terms) vs TD For Bulk Temperature 

Response to Unit Ramp External Temperature Change
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Analytical Solution, Sinusoid Test Case, Lag

• Developing Amplitude And Phase Change
– Non-Dimensional Amplitude, ~0.80

– Phase Lag,  slight

Series Solution (50 Terms) vs TD For Bulk Temperature Lag to 

Unit Sinusoidal External Temperature Change
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System-Level Numerical Model

• LAS Modeled in Thermal Desktop v5.1

– ~10k Nodes

– 800 Surfaces/Solids

• Incorporates Environmental Effects

– Sky (Sink) Radiation Temperature

– Solar Radiation as a Function of Time of Day

– Ambient Air Temperature

– Wind

• Given Environmental Assumptions, This 

Model Predicts the Maximum Error 

Between the Sensors and the PMBT 

– Worst Case Error Arises During Worst Case 

Heating and Cooling Cases
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Worst Case Conditions – Sudden Heating Case

• Air Temperature 
– 99% Variation for Edwards AFB – (i.e. WSMR)

• Maximum temperature change in 3hrs = 20.7oF

• Maximum temperature change in 6hrs = 33.7oF

• Maximum temperature change in 12hrs = 37.8oF

– Create a Worst Case Heating Condition
• Run Cold Case for 4 days – December Values

– 1% Air Temperature – Dec.

– 1% Sky Temperature, 99% Radiation – Dec.

– 0 Wind Velocity

• At 6AM on 5th day (just before sunrise), air temperature 
increases at maximum NEDD rate.

• Temperature continues to rise until it intersects the 99% Hot 
Case Air Temperature
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Sensor Lag Vs. Time – Sudden Heating Case
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Worst Case Conditions – Sudden Cooling Case

• Air Temperature 
– NEDD 99% Variation for Edwards AFB

• Maximum temperature change in 3hrs = 20.7oF

• Maximum temperature change in 6hrs = 33.7oF

• Maximum temperature change in 12hrs = 37.8oF

– Create a Worst Case Cooling Condition
• Run Hot Case for 4 days – December Values

– 99% Air Temperature – Dec.

– 1% Sky Temperature, 99% Radiation During the Day

– 99% Sky Temperature at Night

– 0 Wind Velocity

• At 6PM on 5th day (just before sunset), air temperature 
decreases at maximum NEDD rate.

• Temperature continues to fall until it intersects the 1% Cold 
Case Air Temperature
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Sensor Lag Vs. Time – Sudden Cooling Case
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Possible Use of These Models

• Worst Case Day-Of-Flight Placarding

– Analytic Range = Physical Limit

– Computational Range = Limit Given Assumed Environments
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Possible Use of These Models

• Could Also Provide Ranges Vs. Time of Day
<30 30-32 32-34 34-36 36-38 38-40 40-42 42-46 46-84 84-88 88-90 90-92 92-94 94-96 96-98 98-100 >100

Time (hr) 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Table based on worst case environment specifications

Likely PMBT Restriction - Must have thermal team input

Possible PMBT Restriction - Must have thermal team input

Some Potential for PMBT Restriction - Must have thermal team input

Go - Unlikely PMBT Restriction 
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Conclusions

• Two Models Have Been Developed to Predict the 

LAS Abort Motor Propellant Temperature Based on 

External Sensor Readings Only

– Analytic Model Could Provide Conservative Day-of-Flight 

Ranges

– Computational Model Can Incorporate Environmental 

Assumptions to Provide a Less-Conservative Range

• Both Models Could Be Used in Near Real Time Along 

with Recent Data to Predict PMBT if Operators So 

Chose 

• Orbital Sciences and Its Thermal Analysis Team Are 

Proud to Continue their Support of Lockheed Martin 

and NASA’s Ambitious Manned Spaceflight 

Objectives


