

Study of Unsteady Flow in Transonic Compressors at Near Stall Operation With a Large Eddy Simulation

Chunill HAH

NASA Glenn Research Center, MS 5-11, Cleveland, Ohio 44135

Objectives

- Current RANS with various Turbulence models does not calculate unsteady flow features in transonic compressor adequately for many applications.
- LES can be applied for better calculation.
- Flow fields in two transonic compressors are used for evaluation.

Order of presentation

- Flow field in the Darmstadt's Rotor 1.
- NASA Rotor 37 Flow field.
- Concluding Remarks.

Numerical Procedure

- 3rd-order scheme for convection terms.
- 2nd-order central differencing for diffusion terms.
- Sub-iteration at each time step.
- Dynamic scheme for subgrid-scale model.

Computational grid

Single passage LES. (198x77x200) Full annulus LES. (16x100x77x200) NASA Columbia Cluster used.

Full annulus grid near the rotor

Flow characteristics in transonic compressors at near stall operation

- Tip leakage vortex, passage shock, vortex shedding.
- Self-induced unsteady flow due to interactions among these.
- Non-synchronous frequencies/vibrations due to unsteadiness and instability observed.

Cross section of Darmstadt's compressor test rig

Darmstadt Rotor1

Darmstadt Rotor 1 design parameters

Pressure ratio	1.5
Corrected mass flow rate	16.0 kg/s
Corrected tip speed	398 m/s
Inlet relative Mach number at tip	1.35
Inlet relative Mach number at hub	0.70
Shaft speed	20,000 rpm
Tip diameter	0.38 m
Rotor mean aspect ratio	0.94
Rotor solidity (hub/mid/tip)	1.9/1.5/1.2

Pressure rise characteristics of the rotor

Casing static pressure near stall

18721.05 18725.99

measurement

calculation

Velocity vectors at rotor tip, near stall, averaged LES

Particle traces at rotor tip

Measured endwall pressure variation

Calculated instantaneous casing pressure

Pressure contours at blade tip (LES)

Instantaneous velocity vectors at blade tip (LES)

Wall pressure spectrum from full annulus LES

Wall pressure spectrum from single passage LES

Instantaneous Mach number distribution at mid-span

Instantaneous pressure distribution, blade tip, time 1

Instantaneous Mach Number from LES

Instantaneous velocity vectors

NASA Rotor 37

- Transonic flow field with passage shock over the full span.
- Used as a a blind test case by ASME in 1992.
- Many flow features are not fully understood yet.

Computational grid

Instantaneous Mach number

Comparison of average Mach Number, near Peak effi.

Comparison of Pt distribution

Comparison of Tt distribution

Observations and future research

- Promising results for simulation of transonic compressor flow field with LES.
- Further validations planned.