

CLV Mobile Launcher Solid Rocket Motor Plume Induced Environment

Bruce Vu NASA Kennedy Space Center

Peter Sulyma NASA Marshall Space Flight Center

Thermal & Fluids Analysis Workshop (TFAWS 2008) San Jose State University, San Jose, CA August 18-22, 2008

Outline

- Objectives
- Launch Induced Environment
- THERM1D
- Examples

Prediction

Objectives

- To ensure overall structural integrity and flight safety
- CLV ML Launch Induced Environments
 - Acoustics
 - Vibration
 - Impact Pressure
 - Heating Rates
- Follow-on analyses to determine thermal responses due to plume induced environments (THERM1D)
- Examples
 - Shuttle
 - Ares-I

Launch-Induced Environments

- Input conditions
 - Coordinate systems
 - Lift-off trajectories
 - ML configurations
 - RSRMV engine performance with propellant mixture provided by ATK
- Processes
 - Combustion chamber condition predicted by CEC at Pc=905 psia
 - Nozzle condition by RAMP2
 - Plume expansion by **SPF3**
 - Impingement on different structures by PLIMP
- Launch complex components
 - Exhaust deflectors
 - Hold-down posts, Sound Suppression Water Pipes
 - Blast shields
 - GN2 Purge Line & Heater
 - MLB deck and MLT floors and roofs
 - Elevator shaft

Plume Induced Environments

1600.0 20.0 Total 1400.0 Convection Radiation 1200.0 15.0 Particle Kinetic Gas Pressure (PSIA Particle Thermal 1000.0 BTU/f²•s 800.0 10.0 600.0 400.0 5.0 200.0 0.0 0.0 0 2 3 4 5 6 7 8 9 10 1 Time (sec)

09T0602 Heat Rates

09T0602 Pressure Loads

Time	Qc	Qr	Tr	Mdot	Qpke	Qpte	Pimp	Pimppar	Qtotal
sec	BTU/ft ² ⋅s	BTU/ft ² ⋅s	R	lbm/ft ² ⋅s	BTU/ft ² ⋅s	BTU/ft ² ⋅s	Psia	Psig	BTU/ft ² ⋅s
0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
5	0.0	2.9	0.0	0.00	0.0	0.0	0.0	0.0	2.9
6	1.2	12.1	804.4	0.01	0.0	0.7	14.8	0.0	14.1
7	25.9	50.4	2560.1	0.17	0.2	47.2	15.8	0.0	123.7
8	102.9	69.9	4508.2	2.21	33.2	1171.6	19.0	0.7	1377.6
9	49.8	38.3	3306.1	0.80	3.7	219.9	16.7	0.1	311.8
10	9.7	9.4	1581.8	0.05	0.0	9.0	15.2	0.0	28.1

Thermal and Pressure Predictions for Body Point 09T0602 Using a North Drift Trajectory

PLIMP

Aluminum Oxide Deposition Layer Integral

$$\Delta = \frac{\alpha}{\rho_{Al_2O_3}} \int_{t}^{t+dt} (\rho v)_W dt$$

Heat Rate Calculation with Aluminum Oxide Deposition

$$Q_{HW} = Q_{C_{CW}} \left[\frac{T_{o_R} - T_{WALL}}{T_{o_R} - 540^{\circ} R} \right] + \alpha (\rho v)_W (H_P - H_W)$$

• Shuttle Range Safety Cable might have caused debris issue

• Previous analyses did not include Al2O3 buildup

• Cable materials include layers of Teflon and Copper

• Five inner locations identified in THERM1D

- Outer jacket starts melting at 1.02 sec
 - Complete burn-through at 1.3 sec

- Outer jacket starts melting at 1.02 sec
 - Complete burn-through at 1.3 sec

Rady Daint	Description	PLIMP Co	oordinate F	rame (FT)	Launch Complex Coordinate Frame (IN)			
bouy Foint	Description	X	Y	Z	X	Y	Z	
09X0A07	GN2 Purge Line Top	12.50	-6.34	4.98	5850.0	-1300.1	-59.8	
09X0A12	GN2 Purge Line Duct	12.13	-6.14	4.78	5854.4	-1297.6	-57.4	
09X0A13	GN2 Purge Line Duct	11.27	-6.14	4.78	5864.8	-1297.6	-57.4	
09X0A14	GN2 Purge Line Duct	10.32	-6.13	5.60	5876.1	-1297.5	-67.2	
09X0A15	GN2 Purge Line Duct	9.84	-5.91	6.00	5882.0	-1294.9	-72.0	
09X0A16	GN2 Purge Line Duct	9.29	-5.67	6.45	5888.6	-1292.1	-77.4	
09X0A17	GN2 Purge Line Base	8.22	-5.66	5.64	5901.4	-1291.9	-67.7	
09X0A18	GN2 Purge Line Base	7.55	-5.74	5.40	5909.4	-1292.9	-64.8	

09X0A14 Heat Rates

Time	Qc	Qr	Tr	Mdot	Qpke	Qpte	Pimp	Pimppar	Qtotal
sec	BTU/ft ² ⋅s	BTU/ft ² ⋅s	R	lbm/ft ² ⋅s	BTU/ft ² ⋅s	BTU/ft ² ⋅s	Psia	Psig	BTU/ft ² ⋅s
0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
2	8.8	31.0	1305.4	0.00	0.0	0.0	15.1	0.0	39.8
3	252.6	41.8	5414.1	2.76	687.4	1322.6	18.4	3.2	2304.3
4	1384.2	81.7	6035.0	8.90	2643.8	4199.2	51.3	12.7	8308.9
5	1284.6	126.0	6042.2	9.12	2422.7	6477.8	51.7	12.3	10311.1
6	255.7	146.8	5394.4	2.33	145.9	1603.9	21.6	1.5	2152.3
7	70.0	60.2	3386.7	0.55	5.8	197.5	16.0	0.1	333.5
8	29.6	36.6	2235.7	0.23	0.8	55.7	15.3	0.0	122.7
9	16.5	19.1	1712.5	0.13	0.2	23.3	15.1	0.0	59.0
10	10.5	2.3	1422.5	0.08	0.1	11.7	15.0	0.0	24.5

- Outer surface reached melting temperature
- Layers at 0.25" and below never reach melting point

SRM Plume Induced Environments Killed This NASA Money Saving Idea

