

Analysis-Driven Systems Engineering With Cielo

TFAWS 2008 San Jose State University Aug 20th, 2008

Mike Chainyk Claus Hoff, Eric Larour, Greg Moore, John Schiermeier Jet Propulsion Laboratory, California Institute of Technology

Outline

- Motivation and Challenges
- Cielo Overview: Architecture and Features
- Examples
- Summary

Cielo Introduction

- Goals
 - Enable "integrated modeling" via fundamentally-integrated thermal, structural, and optical aberration analytic capabilities.
 - Overcome "Commercial Off-The-Shelf" (COTS) tool limitations
 - Provide a platform for continuing methods development, vertical application development
- Status
 - Several year development effort largely by team of former MSC/NASTRAN developers
 - Common model, finite element-based code
 - MATLAB hosted, modular, large model implementation (> 1M structural degrees of freedom, tens of thousands of radiation exchange surfaces)
 - Extensible serial and parallel components (heterogeneous compute environment)
 - Under active development

What is Cielo ?

- General-purpose finite element-based computational tool for multi-physics analysis
- Provides integrated thermal, structural and optical aberration capabilities using a common model
- Nastran input file driven
- Matlab hosted
- Running on serial and parallel machines
- Extensible object-based architecture

Integrated analysis capability facilitates development of detailed system-level model ...

Propagates thermal, structural & dynamic effects down to optical elements and mounts ...

And computes aberrations from which optical merit functions & sensitivity matrices can be assessed and optimized...

Motivation: Thermal and Structural Physics

• Equations of Thermal Equilibrium: (u(t) = temp)

 $[B]\{\dot{u}(t)\} + [K]\{u(t)\} + [R]\{u(t)^4\} = \{P(t)\} + \{N(t)\}$

Capacitance	Conductance	Radiation	Loads
(Sparse)	(Sparse)	(Dense,	(Multiple subcases,
		unsymmetric)	Sparse or dense)

- Time integration via generalized trapezoidal methods (Crank-Nicolson, etc.)
- Nonlinear iteration via Newton-Raphson method
- Equations of Structural Dynamic Equilibrium: (u(t) = disp)

$$[M]\{\ddot{u}(t)\} + f(u(t), \dot{u}(t)) = \{P(t)\}$$

Mass, Damping, Stiffness (Sparse) Loads (Multiple subcases, Thermal strains)

- Situation further complicated by:
 - Temperature-dependent materials
 - Radiation-material interactions
 - Microdynamic, and other geometric/strain/material nonlinearities

Solution Approach

- Common finite element model representation
 - Single model with multidisciplinary attributes
 - Data-driven via augmented NASTRAN file formats
- MATLAB hosting
 - Open, extensible, scalable architecture enabled by rich MATLAB environment
 - mexFunction modules for specific, cpu-intensive phases
 - Solution control, postprocessing in MATLAB
 - Toolbox deployment

Cielo Architecture

Thermal Solution Implementation

- Solution Procedures:
 - High-level MATLAB scripts for solution control, functional module calls
 - Conceptually similar to NASTRAN's DMAP sequences
 - Natural interface to extended functionality (e.g. In-house codes, Simulink, ...)

Thermal/Optical Distortion Example

- Space Interferometry Mission (SIM)
 - Precisely measure angles between stellar objects for astrometric and planet detection purposes
 - 10 meter rigid baseline interferometer
 - Flight Environment
 - Earth-trailing solar orbit
 - Benign radiation environment
- Thermal distortion analysis of Relay Optic #2B
 - Key optical element in science compressor unit
 - Transient thermal distortion analysis, corresponding surface aberrations and optical metrics
 - Geometry modeling, thermal and structural meshing in UG NX
 - UG NX TMG Thermal Analysis, temperature mapping to UG NX mesh (though thermal analysis could have been done Cielo)
 - Distortion analysis, optical aberrations in Cielo
 - Hosting, and optical response postprocessing in MATLAB

Demonstration of the Status of Cielo Validation of the SIM TOM-3 Testbed Results

Thermo-Opto-Mechanical testbed for SIM

Measure thermally induced optical deformations of a full scale beam compressor and siderostat in flight like thermal environments

Siderostat mirror with double cube-corner including cans, yoke, and blankets

Box, Cans, Siderostat

Siderostat

Common high fidelity model with thermal, structural and optical attributes

- Thermal radiation surface properties, conduction and capacitance
- Structural stiffness, thermal expansion
- Optical elements for aberration

Cielo Common Model Creation

Cielo View Factor Calculation

Aug 20, 2008

Cielo Thermal Steady State

- Verification of the thermal model by running pure conduction with enforced temperature at one grid of a part
- Ran steady state thermal to reach equilibrium initial condition for transient

Cielo Thermal Steady State Comparison with Test and TMG

Absolute Temperatures on Siderostat

Comparison of steady state temperatures at selected elements on the mirror

Test / TMG / Cielo

Average deviation from test for 9 measured temperatures

TMG	0.32	Κ
Cielo	0.24	Κ

Cielo Thermal Transient Analysis

- Starts from steady state equilibrium
- Implicit time step integrator, mid-point alpha method, with time step control
- Enforced temperature boundary conditions at the box walls
- 18 hours wall clock time on 256 CPUs to calculate 10 cycles

National Aeronautics and Optical Aberrations

 Verified structural analysis by comparison with NX/Nastran

Maximum displacement normal to the mirror

Code/ Elem.	NX Q9/T6	NX Q4/T3	Cielo Q4/T3
d max [m]	1.100e-11	1.090e-11	1.084e-11
delta	0.0%	1.0%	1.6%

slew_10x_cp_temps Optical Path Difference

- 70 temperature fields for one cycle are read from the data base or are resident in the Matlab workspace
- 70 subsequent linear static analyses each followed by optical aberration calculations based on user specified optical elements
- 15 min. run time on our new SUN machine (in serial) to produce all thermal deformations and optical aberrations over time

Space Administration

Computing Optical Aberrations from Thermal Deformations in Cielo

For every optical element, for every load case,

- Partition displacement solutions to optical degrees of freedom
- Transform displacements to optical coordinate system
- Compute best-fit rigid body components with respect to optical coordinate systems
- Construct deformed optical surface with, or without rigidbody contributions
- Use underlying finite element interpolation functions to compute aberrations as differences between deformed, undeformed surfaces at interferogram locations

- XYZ finite element basic coordinate system
- xyz local optical coordinate system shared with MACOS, CODE V, et al.
- COPTC optical element definition (surface degree-of-freedom associativity, local coordinate system specification)
- OPTCABS subcase-dependent data recovery requests

Summary

Cielo effectively implements thermal, structural, and optical aberration analyses in an open, extensible manner.

"Integrated modeling" can be a natural conclusion if the analytical capabilities are themselves fundamentally integrated.

Unique "predictive engineering" capability presented via common-model approach, Cielo capabilities, MATLAB integration.

Analytical, experimental validation results in excellent agreement.