Design and Flight Testing of the ARLISS Rocket and CFD Modeling of the Nosecone Region

Deeptanshu Arnold* Patricia Nerio
Austin Epps
Dr. P. Papadopoulos

Special Thanks to
Tom Rouse,
Rocketeer

What is Arliss?

-A Rocket Launch for International Students Satellites.
-Organization started in 1999 by Professor Bob Twiggs and AeroPac members.
-Two options: CanSat or ComeBack.

Why Arliss?

- Provides learning experience for all students
- Stimulates interests in Rocketry
- Gain hands on experience with rockets

Approach

- Various nose cone profiles were studied and analyzed using CFD.
- Detailed CFD modeling and analysis was done for tangent ogive nose cone.
- Rocket was designed using Rocksim.
- Rocket was built and tested. Flight data was recorded and compared with CFD and Rocksim simulations.

CFD Analysis

- 2-D Axisymmetry model

Tangent ogive nose cone profile

Grid Modeling

$S_{\text {ESI GROUP }}$

- No of cells: 238203
- Smallest Volume: 4.386218E-14
- Largest Volume: 1.110289E-05
- Smallest Angle : 32.20°

Results

Screen Shots

Velocity Distribution

Pressure Distribution

Results cont.

ALTITUDE (Feets)	VELOCITY $(\mathrm{m} / \mathbf{s})$	PRESSURE $\mathbf{(P a)}$	DRAG $\mathbf{(N)}$	DENSITY $\left(\mathbf{K g} / \mathbf{m}^{3}\right)$	Cd
500	134.1	768.01	13.9418	1.207171805	0.070757
1000	152.4	756.79	13.73812	1.18954585	0.054784
1500	184.4	749.76	13.6105	1.172126046	0.037623
2000	195	744.4	13.5132	1.154912393	0.033901
2500	182.9	722.96	13.124	1.137904892	0.037985
3000	176.8	709.36	12.87711	1.121052005	0.040486
3500	155.4	692.71	12.57486	1.104405269	0.051946
4000	134.1	676.6	12.28242	1.087964685	0.069166
4500	115.8	661.99	12.0172	1.071678714	0.09213
5000	91.44	647.12	11.74726	1.055598895	0.146637

RockSim

- Software to design model rockets and simulate their flights. Step 1: Choose or design components, then assemble them to create the rocket.

RockSim

Step 2: Choose an engine and set launch conditions.

RockSim

Step 3: Run simulation.

Rocket design attributes

Rocket design components	Mass override	Cd override	Flight simulations

	Simulation	Results	Engines loaded	Max. altitude Feet	Max. velocity Feet / Sec	Max. acceleration Feet $/ \mathrm{sec} / \mathrm{sec}$	Time to apogee	Velocity at deploy Feet / Sec	Altitude at deploy Feet
5		4 \%	[M1419W-Non¢	11190.22	1003.75	232.39	25.38	8.13	11190.22
6		5 央	[M1419W-Nont	10281.04	969.63	227.81	24.13	6.83	10281.04
7		6 \%	[M1419W-Nont	10690.12	987.43	230.17	24.69	33.18	10690.12
8		7 \%	[M1419W-Nont	9504.46	937.16	223.81	23.05	13.47	9504.46
9		8 \%	[M1419W-Nont	13399.64	1069.07	240.66	28.33	8.43	13399.64
10		$9{ }^{*}$	[L952W-30]	8992.32	783.54	186.48	24.41	11.72	8992.32
11		10%	[L952W-30]	8962.30	783.50	186.56	24.37	35.13	8962.30
12		110	[M1419W-Nont	12431.04	1048.83	237.80	27.04	67.40	12431.04
13		12 类	[L952W-None]	8282.28	767.04	183.43	23.28	75.39	8282.28
14		13 \%	[M1419W-Nont	12314.30	1048.95	238.01	26.90	90.48	12314.30

ARys.

RockSim

Step 3: Run simulation.

Rocksim estimated graph of altitude and acceleration

ARLISS SJSU

Main Parts of Rocket

- Nose Cone
- Parachute
- GPS
- Body Tube
- Cansat carrier
- Electronics Bay
- Coupler tube
- Booster Frame/Fins
- Coupler tube
- Motor

Rocket Electronics

1x BeeLine GPS Transmitter

- Mounted inside the plastic RFtransparent nosecone
- Transmits data on 70 cm HAM radio band
- Uses the Automated Packet Reporting System (APRS) protocol to communicate with a Kenwood TH-D7A receiver
- Transmits altitude, latitude, longitude, heading, and speed
- Range of up to 20 miles line-ofsight
- On-board memory to store inflight data

Rocket Electronics

2x G-Wiz HCX/50 Flight

Computers

- Operate simultaneously to provide redundancy
- Records acceleration and barometric data
- Apogee is detected via accelerometer
- Fires main CO_{2} ejection system at apogee to separate booster
- Fires secondary CO_{2} charge 6 seconds after apogee to separate nosecone and CanSat carrier.

- Computers and ejection system are powered by four 9V Duracell batteries

Electronics Bay

Acceleration and altitude versus time from flight computer 1

[^0]
Acceleration and altitude versus time from flight computer 2

Computer Computer Discrepanc 1 2
 y

Max
Max airspeed
636.0
675.4
6.1\%

Max Mach
0.57
0.61
7.0\%

Alt. of max. airspeed
2081.7
2233.0
7.3\%

Time to apogee
20.2
21.1
4.5\%

Time to burnout
5.6
5.7
1.8\%

Conclusions

Simulation 1 Simulation 2 Simulation 3 Actual CFD

Weight (lbs)	35 lbs	35 lbs	35 lbs	35 lbs	-
Cd @ 500ft	-	-	-	0.092	0.071
Max altitude (ft)	7913	7711	6318	6302	-
Max velocity (ft/s)	767	723	671	636	-
Max accelerati on (ft/s2)	183	172	164	170	-
Time to apogee	23.3	22.8	20.3	20.3	-

Dimensions of the Arliss Rocket

Total Thrust	952 N
Propellant Weight	2650 gm
Burn Time	6.2 s

[^0]: Q Movement

