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Potable Water Production

« Potable water quality/availabllity is a serious issue

— 1 billion without reliable access to clean drinking water
— up to 5 million die yearly of water borne diseases [1]

« Long duration space flight will require recycling of water to
decrease liftoff weight

 Membrane filtration (RO) shows promise

— semi-permeable membrane
— removes foulants, including bacteria, viruses and salts

[]] Water sanmmm and Iayglene links to lcealtln WHO 2004. available from:



http://www.who.int/water_sanitation_health/publications/facts2004/en/index.html

Limitations of Membrane Filtration

* Organic and Colloidal Fouling

— fouling results in decreased permeate flux

— combined fouling results from different foulants interacting to foul
at a greater than additive rate [2]

« Maintenance

— crossflow temporarily aids in membrane cleaning
— fouling leads to costly maintenance requiring system shut down

* Power consumption
— higher pressure required to maintain permeate flow rate

I12] Harris, A., 4 Mechanistic Study on the Coupled Organic and Colloidal Fouling of Nanofiltration
Membranes, MS thesis in Civil and Environmental Engineering. 2008, Rice University: Houston, TX.



 Cell dimensions scale with volume
fraction and particle radius

 Continuum flow field:
— one dimensional crossflow
— quasi-steady

« Particle boundary conditions:

— axial and no-flow directions (L and W)
have periodic boundary conditions

— reflective boundary condition at
membrane

Solution Domain




Force Bias Monte Carlo

* Probability and move acceptance
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* Probability of movement to lower energy state is 1
— otherwise the exponential is used



Viscosity 7 C =n,exp aC
— generalized Newtonian 15

— experimentally determined
coefficients [3]

— higher volume fractions shown to
follow exponential trend
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Boundary conditions at membrane
— no slip

- v, U0

Spectral collocation solution ve
— Chebyshev polynomials
— Chebyshev-Gauss-Lobatto grid
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[3] Hale, J.S., A. Harris, Q. Li, and B.C. Houchens. The fluid mechanics of membrane filtration. in 2007
ASME International Mechanical Engineering Congress and Expeosition. 2007, Seattle, WA,



Mormalized Channel Height
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Particle-Particle Van der Waals

* Van der Waals potential
— general form [4]
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— long-range interaction [4]
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[4] Parsegan, V.A., Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and
Physicists. 2006, New York, NY: Cambridge University Press.



#A Particle-Particle Electrostatic Double Layer\gsd

 Electrostatic double layer potential
— close-range [5]

327Re,e, k. °T? ,
= 207 yoexp —«l
4

zed
=tanh| —

b

VEDL—SS

o 2x10°N ,e’z°C,
g6, K, T

— long-range [5]
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|5] Elimelech, M., J. Gregory, X. Jia, and R.A. Williams, Particle Deposition & Aggregation: Measurement, Modeling
and Simulation. Colloid and Surface Engineering: Applications in the process industries; Controlled Particle,
Droplet and Bubble Formation, ed. R.A. Williams. 1995, Weburn, MA: Butterworth-Heinemann.




: Particle-Particle Electrostatic Double Laye hs?

* Full range equation
— Assume identical particles
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Particle-Surface Interactions
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v _ 647Reye,k,T?

EDL-SP — 2
ZyZ 58

77, exp —xl

— special case of sphere-sphere interaction



Final State of Simualation With and Without Electrical Interactions
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Surface Roughness

« Surface roughness of the membrane can
substantially affect the motion of particles in the

flow

« Fix particles to wall to approximate roughness
— Allows a large variety of roughness possibilities

— Key guestion: random distribution versus uniform
distribution



Numerica

« Wall phenomena
— Artifact of concentration

calculation 1 S
— Change concentration
calculation (volume)
. Limited effect on the flow "]
field
« Actually improved speed ol
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N-Body/Parallel Optimization

Previous work had moved particle by particle, evaluating a
movement probability independent of other particle motion

New movement process attempts new position before calculating
move acceptance probability

N-body algorithms exist
— Lump particles in far field for faster evaluation
— Fast Multipole Method (FMM) best candidate [6]

Requires a new data handling structure

Designed for “large” systems

[6] Greengard, L., The Rapid Evaluation of Potential Fields in Particle Systems. ACM Distinguished
Dissertations. 1988, Cambridge, MA: Massachusetts Institute of Technology.



Change many small passes to
a few large passes

Each time a potential
evaluation is carried out we
need a sync, broadcast, and
gather

New data handling allows for
N-body algorithms

Exploit symmetry not
previously available

F=H+H™ =

Parallel Optimization




Future Work

« Determine appropriate number of particles fixed
to wall to approximate real world surface
roughness

* Increase simulation scale (more particles, longer
channel)

* Application of FMM to large systems
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