TFAWS Paper Session

Simulation of flow through Supersonic Cruise Nozzle: A validation study

Balasubramanyam Sasanapuri Manish Kumar & Sutikno Wirogo ANSYS Inc.

> Presented By Reza Ghias

Thermal & Fluids Analysis Workshop TFAWS 2011 August 15-19, 2011 NASA Langley Research Center Newport News, VA

- Problem Description
- Results Requested
- Reference
- Model and Flow Conditions
- Nozzle Parameters
- Test Matrix
- CFD Study
- Results and Conclusion

Problem Description

- Problem Statement
 - Simulate flow in a supersonic cruise nozzle
- Objectives
 - Compare ANSYS CFD predictions with the wind tunnel results presented in NASA TP-1953
 - Compare density-based and pressure-based solvers
 - Compare the effects of grid adaption on the solution

- Contours of Mach Number and Pressure
- Comparisons of
 - Discharge coefficient
 - Thrust parameter

- Experimental data from reference NASA TP-1953
 - Simulation of a supersonic aircraft's operation over a wide altitude-velocity flight envelope
 - Angle of attack: 0°, Free Stream Mach: 0.60 to 1.30
 - Five different axisymmetric convergent-divergent nozzles tested
 - Different internal and external geometries representing the variable-geometry nozzle operating over a range of engine operating conditions
- Configuration 2 (supersonic cruise nozzle) was selected for the present study

Model and Flow Conditions

- Supersonic Cruise
 Nozzle
- Data from NASA TP-1953

L			Design dimensions											
Configuration	Flight segment	Power setting	$\left(p_{t,j}/p_{\infty}\right)_{des}$	A _e /A _t	At/Am	A _e /A _m	dt/dm	l _C ∕d _m	l _D ∕d _m	θ, deg	δ, deg	ℓ/d _m	d _e /d _m	β, deg
1	Subsonic cruise	Dry	4.25	1.250	0.250	0.312	0.500	0.286	0.800	42.35	2.12	1.000	0.559	15.05
2	Supersonic cruise	Dry	21.23	3.000	.250	. 750	.500	.286	.779	42.35	13, 18	. 979	. 866	3.82

Nozzle Parameters

$$\mathbf{C}_{d} = \dot{\mathbf{m}} / \dot{\mathbf{m}}_{i}$$
Isentropic Mass
Flow Rate
$$\dot{\mathbf{m}}_{i} = \mathbf{P} \mathbf{A}_{t} \sqrt{\frac{\gamma}{\mathbf{R} \mathbf{T}} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}}$$

 Mass flow Rate from CFD/Experiment at nozzle exit,
 P Total Pressure at Nozzle Inlet
 T Total temperature at Nozzle Inlet

 \mathbf{p}_{∞} Ambient pressure \mathbf{A}_{t} Throat Area

• Nozzle thrust performance, Cfg

$$\frac{Cfg = F_{j} / F_{i}}{\frac{Isentropic}{Thrust}} F_{i} = \dot{m}_{i} \sqrt{\frac{2\gamma}{\gamma - 1} RT} \left[1 - \left(\frac{p_{\infty}}{P}\right)^{\frac{\gamma - 1}{\gamma}} \right]$$

F_i Thrust from CFD/Experiment

$$\mathbf{F}_{j} = \dot{\mathbf{m}}\mathbf{V}_{e} + (\mathbf{p}_{e} - \mathbf{p}_{\infty})\mathbf{A}_{e}$$

p_e Area-averaged pressure at Exit A_e Exit Area V_e Mass-Averaged velocity at Exit

Nozzle Parameters – Experimental Data

- Test Set 1
 - M = 0.6, Nozzle Pressure Ratio (NPR) = 2.5
 - Comparison of various solver schemes
 - Pressure Based Coupled Solver (PBCS)
 - 2nd Order discretization
 - PRESTO, QUICK discretization
 - Density Based Navier-Stokes Solver (DBNS)
 - Effect of Mesh Adaption
- Test Set 2
 - M = 0
 - NPR = 2.5, 4.0, 5.0, 6.0, 7.0
 - Best solver settings from Test Set 1

CFD Study : Mesh and Boundary Condition

• 2-D axisymmetric flow domain

- Nozzle Exit Diameter = 0.132 m
- Domain length = 3.1 m
- Domain height = 1.0 m
- Total no. of cells ~ 359 K
- Interior boundaries at nozzle exit and throat for postprocessing
- Boundary Conditions:
 - Outlet at ambient condition
 - Test Set 1
 - Far-field Mach number = 0.6
 - Nozzle Inlet, P = 2.5 atm; T = 300 K
 - Test Set 2
 - Far-field Mach Number = 0.0
 - Nozzle Inlet, T = 300 K, P = Various

- Various solver parameters were tested
 - Pressure Based Coupled Solver (PBCS)
 - 2nd Order for all equations
 - PRESTO for Pressure, QUICK for other equations
 - Density Based Solver (DBNS)
 - 2nd Order for all equations
- Mesh Adaption
 - Performed using Blast Wave Identification Parameter (BWIP) scheme
 - Results compared for all schemes pre- and postadaption
- k- ω SST turbulence model (y⁺ ~ 1)

CFD Study : Choice of Solvers

Density Based Coupled Solver (DBNS)

- High speed external flow(supersonic and hypersonic regime)
 - Sharp shock structures
- Less efficient for resolving large low-speed circulating wake
- Less efficient for internal flow and heat transfer cases
- Pressure Based Coupled Solver (PBCS)
 - Subsonic, transonic, and mild supersonic external flows
 - Smearing of shocks clearly visible
 - Efficient in resolving large circulating wake and internal flow
 - It is not the segregated pressure based solver
 - Very fast and less memory requirement

- Over-expanded nozzle (Pressure at the nozzle exit ~ 92000 Pa) : Jet contracting at the exit
- Mixing of subsonic and supersonic flow at the exit
 - Shock diamonds are formed
 - Oscillatory flow at the nozzle exit
- DBNS (2nd Order) and PBCS (PRESTO, QUICK) capture shock diamond effect better than PBCS (2nd Order)

Test Set 1 : Mesh Adaption

Mesh Adaption

- For oscillating solutions adaption performed when the solution reached mid harmonic
- Using BWIP (Blast Wave Identification Parameter) scheme
- Adaption near the shocks only
- Adaption did not increase the number of cells at the nozzle wall

Test Set 1 : Mesh Adaption Continued...

- Blast Wave Identification Parameter (BWIP)
 - Collaboration with Benet Weapon Lab
 - Specially formulated for stationary and moving shocks

$$f_{BWIP} = -a \frac{1}{|\nabla p|} \nabla \cdot (\rho \vec{u}) + \frac{\vec{M} \cdot \nabla p}{|\nabla p|}$$

- Refine the cells where $L_1 \leq f_{BWP} \leq L_2$

Test Set 1 : Mesh Adaption Continued...

- Mesh Adaption
 - Adaption 1: Cell count changed from 359,100 to 388,788
 - Used with all schemes
 - Adaption 2: Cell count changed from 388,788 to 481,122
 - Used with PBCS with PRESTO & QUICK

NAS

Test Set 1 : Mesh Adaption Continued...

- Effect of Mesh Adaption on Velocity Contours
 - Mesh adaption only leads to small changes in the velocity
 - Pressure is also only slightly affected by adaption (not shown here)
 - Similar behavior seen for PBCS solvers with both (2nd Order) and (PRESTO, QUICK) discretizations

Test Set 1 : Nozzle Internal Pressure Distribution

Nozzle Parameters – Calculation from CFD

- Mass flow rate at the nozzle exit is calculated as the mean value
- Static pressure at the nozzle exit is calculated as the mean of its area-average
- Velocity at the nozzle exit is calculated as the mean of its mass-average
- Mean values used to calculate nozzle thrust

	C _d (Exp)	C _d (CFD)	C _d (Error %)	Cfg (Exp)	Cfg (CFD)	Cfg (Error %)
PBCS (2 nd Order)	0.97	0.9651	-0.502	0.71	0.6519	-8.180
PBCS (2nd Order) Adapted	0.97	0.9653	-0.485	0.71	0.6531	-8.013
PBCS (PRESTO, QUICK)	0.97	0.9651	-0.505	0.71	0.6609	-6.921
PBCS (PRESTO, QUICK), <mark>Adapted</mark>	0.97	0.9648	-0.534	0.71	0.6609	-6.910
PBCS (PRESTO, QUICK), Adapted twice	0.97	0.9651	-0.506	0.71	0.6618	-6.793
DBNS	0.97	0.9648	-0.534	0.71	0.6700	-5.635
DBNS, Adapted	0.97	0.9649	-0.528	0.71	0.6701	-5.624

- Both PBCS and DBNS solvers provide excellent match for discharge coefficient with the experimental data
- DBNS solver provides the best match with experimental data for the thrust parameter
- Shock diamond phenomena is captured quite well with all solvers
 - DBNS 2nd Order and PBCS with QUICK and PRESTO offer better resolution than PBCS 2nd Order
- Adaption doesn't seem to affect the nozzle internal pressure distribution
 - As the number of cells on the walls remain unchanged after adaption
- Adaption leads to very small improvement in the matching
 of thrust parameter with experimental data
 - As the mesh is fine enough to capture the shocks quite accurately₂₁

- Nozzle in still air: Far-field Mach Number = 0
- Nozzle Pressure Ratios (NPR)
 - 2.5, 4, 5, 6 and 7
- Solver Setup (based on the Test Set 1 results)
 - DBNS solver
 - Flux type: AUSM
 - Gradients: Least Squares cell based
 - Flow, Turbulence: Second Order

NPR	C _d (Exp)	C _d (CFD)	C _d (Error %)	Cfg (Exp)	Cfg (CFD)	Cfg (Error %)
2.5	0.97	0.9650	-0.519	0.79	0.7693	-2.626
4.0	0.97	0.9651	-0.505	0.873	0.8479	-2.872
5.0	0.97	0.9652	-0.496	0.889	0.8753	-1.536
6.0	0.968	0.9653	-0.284	0.906	0.9028	-0.358
7.0	0.967	0.9653	-0.176	0.923	0.9284	-0.590

Test Set 2 : Plot of Nozzle Parameters

Test Set 2 : Error % in Nozzle Parameters

Mach Contours

- For different pressure ratios
- Note: The color range corresponds to the minimum and maximum value for each case to highlight the shock location

Test Set 2 : Pressure Contours at different Pressure Ratios

Pressure Contours

- For different pressure ratios
- Note: The color range corresponds to the minimum and maximum value for each case to highlight the shock location

- DBNS solver was selected for Test Set 2 as it provided best agreement with experimental data for Test Set 1
- Excellent match with the experimental data was obtained for Test Set 2
- Shock diamond phenomena was captured very well
- Adaption wasn't attempted for Test Set 2 as it didn't affect the results significantly for Test Set 1
 - Mesh is already fine enough
- ANSYS CFD provides Pressure and Density based solvers with easy to use mesh adaptation capability
 - To capture shock-shock and shock-turbulence interactions very accurately