Mechanically Pumped Fluid Loops: Components and Systems for Space Applications

PACIFIC DESIGN TECHNOLOGIES, INC.
6300 Lindmar Drive
Goleta, CA 93117
Ph: (805) 961-9110
Fax: (805) 961-9120
www.pd-tech.com
[first initial].[last name]@pd-tech.com
Mechanically Pumped Fluid Loops

- Typical Mechanically Pumped Fluid Loop
- System Considerations
- Past and Present Systems
- Testing Protocol
- Performance Measurement
- Future Trends
Our people are part of our product

Typical Mechanically-Pumped Fluid Loop

ACCUMULATOR WITH LEVEL INDICATOR

PURGE/FILL OUTLET

PURGE/FILL INLET

CHECK VALVE

FILTER

MOTOR-DRIVEN PUMP

HEAT EXCHANGER OR RADIATOR

FROM HEAT LOAD

TO HEAT LOAD
Our people are part of our product

BAMS LSCU

Firescout LCS

ISR Aircraft LCS
Our people are part of our product

Liquid Cooling Systems for Space Applications

MSL Integrated Pumping Units

ISSA Satellite Refueling Demo.

AMS-2 Pump and Controller
Primary Environments which affect system design are:
- Temperature ranges
- Altitude
- Vibration / Shock

Operational Voltage(s) -
Input Power Limit -
Input VA Limit -
Power Factor Requirements -
EMI Requirements -

System Warm-Up Time -
Fluid Temperature Control -
Reliability / Life -
Noise Limits -
Built-In-Test Features -
etc.

Operational Voltage(s) -
Input Power Limit -
Input VA Limit -
Power Factor Requirements -
EMI Requirements -

Select Coolant(s)

Calculation of operational and non-operational environments

Define Cooling Requirements and Heat Transfer Method

Heat Transfer capacity / method drives the flowrate, pressure drop, heat exchanger size, etc.

Define System Fluid Volume

Required to size the accumulator

Calculate System Fluid Volume

Calculate Required Fluid Flowrate & Pressure Drop

Required to select and size the pump / motor
Requires definition of line size and hydraulic layout

Defining operational and non-operational environments

Define Operational / Non-operational Environments
Unique Requirements for Space Applications

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Feature(s)</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-duration missions</td>
<td>• All-welded construction (no elastomeric seals)</td>
<td>High reliability</td>
</tr>
<tr>
<td></td>
<td>• Flooded pump motors (no shaft seals)</td>
<td></td>
</tr>
<tr>
<td>Strict cleanliness and material compatibility</td>
<td>• CRES wetted materials</td>
<td>Reduced potential for material interactions</td>
</tr>
<tr>
<td>requirements</td>
<td>• Canned (sealed) motors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Carbon bearings</td>
<td></td>
</tr>
<tr>
<td>Wide temperature range</td>
<td>• Limited material list</td>
<td>Reduces thermal expansion issues</td>
</tr>
<tr>
<td></td>
<td>• Appropriate fits/clearances</td>
<td></td>
</tr>
<tr>
<td>Tight power budget</td>
<td>• Small motors</td>
<td>Reduced power consumption</td>
</tr>
<tr>
<td></td>
<td>• Low flow rates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimize system pressure drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Passive thermal control valves</td>
<td></td>
</tr>
</tbody>
</table>
Past and Present Systems

Integrated Pump Assemblies
- Mars Pathfinder (cruise stage)
- Mars Exploration Rover (cruise stage)
- Mars Science Laboratory (cruise stage and rover)

Pumps and Accumulators
- AMS-2 Tracker
- Satellite Refueling Demonstrator

Thermal Control Valves
- Part of Mars IPA’s
- “Smart” Loop Heat Pipes (ground demo projects)
Typical Test Sequence

- Component performance testing, lab ambient environment
- Pre- and Post-Welding performance, lab ambient environment
- Proto-flight Vibration and Shock
- Thermal Vacuum Cycling
- Performance Mapping
- Integration testing (by customer)
- Vehicle testing (by customer)
Our people are part of our product

Pump Performance

- Flow, pressure rise and power consumption
- Speed control, start-up and high/low temperature performance
- Current/Power Limiting circuitry
- Fault detection/Speed output signals

Centrifugal Pump Performance Map
Our people are part of our product

Accumulator Performance
- Displaceable volume
- Pressure vs. volume performance

Thermal Control Valve Performance
- Flow rate vs. temperature
- Flow and pressure drop performance

Accumulator Performance Test

Thermal Control Valve Performance Map
Performance Enhancements
• Higher pump efficiency through impeller changes, and multi-stage pumps
• Sensorless motor controls to eliminate position sensors
• High temperature electronics
• Controller miniaturization

Alternate Fluids
• Reduce use of ozone-depleting chemicals

Thermal Control Valves
• New system architectures

Multi-stage Pump Impellers
Summary

• Pumped-loop systems provide relatively high capacity heat transfer performance in a small package
• High reliability systems have been proven through multiple long-duration missions
• Electric power consumption can be minimized through proper system sizing
• Materials and processes well established
• Established supply base minimizes program risk
• Advances in electronics offer future improvements in size/weight/power
• Innovative architectures under development