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Introduction

 Integrated System Overview

« Subsystem Design

— Reverse Turbo-Brayton Cycle (RTBC) Cryocooler
— Constant-Conductance Heat-Pipe (CCHP) Radlator

— Broad Area Cooling (BAC) Shield

— |Insulation

— Distribution Manifold

— Heat Trap

« Cryocooler Operation and Testing

Conclusion
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Introduction

 NASA Glenn Research Center (GRC) Cryogenic Boil-Off
Reduction Testing (2012-2013)

— Ground test to reduce liquid hydrogen (LH2) bolil-off
from spacecraft propellant tanks
* Reduce MLI Radiation Heat Leak by 66% and
* Reduce Penetration Conduction Heat Leak by 60%

— Broad Area Cooling (BAC) via a cooled shield within
the multilayer insulation (MLI) layers

— Strut cooling via thermal straps linked to the BAC
shield tubing

— Active cooling via integrated Reverse Turbo-Brayton
Cycle (RTBC) Cryocooler
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Integrated System Overview

D\
« Unique, innovative integrated thermal control system
— Process flow from cryocooler cools large BAC shield surface area (8 m?)
— Single closed loop for both cryocooler and BAC shield

— Cryocooler compressor and aftercooler mounted directly to the radiator
surface Turbine with
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Integrated System

at Test Facility NASA

 NASA GRC’s Small
Multipurpose Research
Facility (SMiRF)

— Vacuum levels as low as
8.5e-6 torr

— Temperatures controlled
as low as 110K via cold
wall
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« RTBC Cryocooler from Creare, Inc. modified from existing hardware for a
previous project

— Eliminated a second-stage turboalternator

— Replaced commercial compressor inlet filter and aftercooler with flight-
like versions

— Modified compressor flow passages for lower flow rates
— Repackaging of cryocooler assembly
— Reconfiguration of tubing, valves, and fitting to fit BAC interface

Turboalternator  Connections to BAC BAC Simulator  Flexlines  CO™P'®SSOT  Aftercooler

Stage 1b Recuperator

Stage 1 TA/Filter

Stage 2 Interface HX
(mostly hidden)

Stage 2 TA/Recuperator/Filter

Stage 1 Interface HX

COTS Compressor Inlet Filter:

Compressor

COTS Aftercooler

Recuperator Modules

Stage 1a Recuperator Fill-Purge Connections Compressor Inlet Filter
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RTBC Performance In Cold Environments N_%A

* Cryocooler requires heating along Flexlines between
Compressor, Recuperators, and Inlet Heaters when
testing in cold environments

« With heaters, cryocooler start-up was successfully at
temperatures as low as 200K

TFAWS 2011 — August 15-19, 2011 8



Constant-Conductance Heat-Pipe Radiator
« CCHP Radiator from Active Cooling Technologies, Inc.
— Two thick aluminum panels; each rejects at least 200 W at 300 K to a

sink temperature of 220 K
« Four ammonia-aluminum constant conductance heat pipes per panel
« Full assembly has a 1.5 m diameter, height of 0.36m, 0.125 in thick
« Painted surface with Aeroglaze A276, measured emissivity of 0.935

— Radiators bolted directly to the heat rejection plate of the cryocooler,

aka the radiator interface plate
* Nusil CV-2943 used as a thermally conductive gap filler between radiator
and interface plate

Radiator Panels

COlllpl'CSSOI'

Aftercooler

Interface Plate
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Broad Area Cooling Shield

 NASA-developed aluminum shields with stainless steel
tubing
— Three 120° sections, each with two cooling loops

Supply &
Return Ports
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Multilayer Insulation (MLI)

 The BAC shield is located within the MLI layers
— 30 layers of conventional high-density MLI outside shield
— 30 layers of low-density MLI inside shield

— Two types of low-density MLI were tested:

« Conventional MLI, requires additional supports for BAC shield
fabricated from low-conductivity Ultem 1000

» Self-Supporting MLI, eliminates need for Ultem supports

2x15 layers MLI
0.25 DAM, 20/cm

5-mil Aluminum >

O

3x10 layers MLI
0.25 DAM, 8/cm

Foam .
Insulation bk e

Self-Supporting MLI (SSMLI)

Tank Wal| ——>
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Distribution Manifold

Flexhoses » Toroidal Header

— Relatively short — Relatively long
manufacturing lead time manufacturing lead time

— Difficult to meet precision — Meet precision cleanliness
cleanliness requirements requirements

— Non-compact design with — Compact design with
suboptimal flow distribution uniform flow distribution

— Increases cold gas fraction — Increases cold gas fraction
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Heat Traps

« Copper straps and clamps were used to trap a portion of
the heat entering the tank through the penetrations
— Twelve tank struts
— Fill/Drain piping
— Vent line piping
* Removed after first round of testing
« Cooling from venting provides more heat removal than the heat trap

Copper
Strap/Clamp
Assembly
Strut

BAC Tube
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Cryocooler Operation and Testing

« Testing of the cryocooler both prior to and following
Integration with the associated subsystems showed
relatively consistent performance

Test Description | Net Cooling | Rejection Temp.

Pre-integration 11 300 80
Pre-integration 15 300 90
Integrated System 13.5 281 80
Integrated System 16.4 277 90
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* The start-up of the system at cold temperatures (< 220K)
was demonstrated successfully
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Compressor speed constrained for 1200 minutes due to
operational requirements

Delays ability to reach 80 K until constraint is lifted and
compressor speed it raised.
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Conclusion

* Integrated system testing reflects a unique approach to
boil-off reduction similar to proprosed future flight
configurations

— Large surface area application of broad area cooling shield
technology

— Direct mounting of an RTBC cryocooler to a heat-pipe radiator

— Direct integration of a cryocooler/circulator loop with broad area
cooling tubing loops

« Radiator and cryocooler performance both met or
exceeded performance expectations for the system

* Further data reduction to be published by the principal
Investigator

TFAWS 2011 — August 15-19, 2011 19



References

Christie, R. J., Tomsik, T. M., Elchert, J. P., & Guzik, M. C. (2011).
Broad Area Cooler Concepts for Cryogenic Propellant Tanks.
Thermal & Fluids Analysis Workshop (TFAWS). NASA Langley
Research Center.

Guzik, M., & Tomsik, T. (2012). A Scaling Tool for Modeling Single
Stage Reverse Turbo-Brayton Cycle Cryocoolers with a Broad Area
Cooling System for Cryogenic Propellant Tanks. Thermal & Fluids
Analysis Workshop (TFAWS). NASA Langley Research Center.

Zagarola, M. (2012). Turbo-Brayton Cryocooler for NASA’s Liquid
Oxygen Zero Boll-Off Ground Test. Creare Inc., NASA Contract
NNA11ABGOP.

Zagarola, M. V., Breedlove, J. J., Kirkconnell, C. S., Russo, J. T., &
Chiang, T. (2009). Demonstration of a Two-Stage Turbo Brayton
Cryocooler for Space Applications. Cryocoolers 15, International
Cryocooler Conference.

TFAWS 2011 — August 15-19, 2011 20



