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Variable Conductance Heat Pipes (VCHPs) 

• At high heat load the temperature dependent saturation pressure of the 

working fluid is high and compress the non-condensable gas into the 

reservoir.   

• At lower heat input the working fluid temperature and pressure is lower, and 

the non-condensable gas expands into the condenser. 
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VCHPs for Precise Temperature Control 

• Typical VCHP used for precise temperature control 

– Stainless steel reservoir at the end of the condenser 

– Cold biased, Electrically heated 

– Typically can control temperatures to ±1 to 2°C 

4 
Advanced Cooling Technologies, Inc.                  TFAWS 2011 – August 15-19, 2011 

 



  
Other VCHP Applications 

1. Variable Thermal Links 

2. Frozen Start-up 

3. Over-Temperature Protection (discuss in separate TFAWS 

presentation) 

• Reservoirs normally not electrically heated 

– Cold reservoir at condenser 

– Warm reservoir at evaporator 

• Looser temperature control band, but eliminate need for electrical 

heaters and control 

• Two Examples discussed 

• VCHP Radiator for Lunar and Martian Fission Power Systems 

– 2 m long thermosyphons with unheated reservoirs 

• VCHP Variable Thermal Links for Balloon Instrumentation 

– Warm reservoir near evaporator versus cold reservoir near condenser 

5 
Advanced Cooling Technologies, Inc.                  TFAWS 2011 – August 15-19, 2011 

 



  
Reservoir Location and Connections 

• Variable thermal link VCHPs can have 3 different reservoir 

configurations 

1. Reservoir located near the evaporator, with an internal line 

– Warm reservoir, tighter temperature control 

– More expensive to fabricate, may aid in routing 

2. Reservoir located near the evaporator, with an external line 

– Warm reservoir, tighter temperature control  

– Variable Thermal Links for Balloon Instrumentation 

3. Reservoir at the end of the condenser 

– Conventional geometry , easiest and cheapest to fabricate 

– Cold reservoir, sets a minimum allowable ΔT 

– VCHP Radiator Program, Variable Thermal Links for Balloon 

Instrumentation 
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Cold versus Warm Reservoirs 

• For large ranges in sink temperature, unheated reservoirs only allow 

coarse temperature control 

– VCHPs work by having the NCG expand as the vapor pressure drops 

– With an unheated reservoir, the drop in reservoir temperature also 

causes the gas to contract 

– Requires minimum ΔT for temperature difference between hot and cold 

sinks 

• Example below for an Al/NH3 Lunar VCHP with a minimum ΔT of    

~ 30 K 
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VCHP Radiator – Technical Challenges 

• The Lunar and Martian environments present challenges for thermal 

management systems. 

– Variable system loads resulting from intermittent use 

• Desire to power down systems between missions 

• Results in large turn down ratios 

– Large changes in environment temperature 

• Lunar surface temperature range:  -140 °C to 120 °C 

• Mars equatorial, near-surface temperature range: -100 °C to 0 °C 

• Conventional radiators are sized to operate at the highest 

temperature. 

– Sink temperature reduction results in higher heat rejection 

• Control system necessary to prevent system instability 

• During low or no power operation, working fluid will likely freeze. 

– Potential damage to radiator and uncertain restart behavior. 

• Develop freeze-tolerant Variable Conductance Heat Pipe (VCHP) 

Radiator 
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Lunar Fission Surface Power Concept 

• NASA Glenn Concept 

• Reactor delivers power to Stirling Convertors 

• Secondary loop transports waste heat 

– Water selected as the working fluid 

• Waste heat rejected by heat pipe radiator panels 

– Heat pipes provide redundancy 

Geng, Mason, Dyson, and Penswick, STAIF 2008 

16 m 

Main Radiators 

1 m 

Reactor 

Plug Shield 

Stirling Converters 

2 m 
Cavity Radiators 

4 m 
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Technical Challenges 

• The VCHP radiator needs to do the following: 

– Operate in the temperature range from 370 to 400 K 

• Too hot for ammonia 

– Minimize mass 

– Accommodate the Coefficient of Thermal Expansion (CTE) mismatch 

between the titanium heat exchanger and the Graphite Fiber Reinforced 

Composite (GFRC) panel face sheets. 

– Allow the heat pipes to continue to operate with minimum temperature 

drop as the power is reduced 

– Startup with free water frozen in an arbitrary position during transit to 

the moon 

– Survive multiple freeze/thaw cycles. 
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Technical Challenge – Freeze/Thaw 

• While not operating, the heat pipes will be exposed to low temperatures 

– Power down on the Lunar or Martian surface 

– Transit to mission site 

• As a heat pipe freezes 

– Since input occurs at the evaporator, the condenser freezes first 

– Warm working fluid continues to transport thermal energy to the condenser 

– Finally, the evaporator freezes 

– Most, if not all, of the working fluid is deposited in the condenser 

• The heat pipe cannot restart 

• As a VCHP freezes 

– The working fluid pressure decreases allowing the NCG to expand 

• The condenser de-activates as temperature drops 

• NCG confines the working fluid to the evaporator 

– When the VCHP freezes, the majority of the working fluid resides in the 

evaporator 

• Restart is possible 
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Radiator Panel Features 

• Titanium/water thermosyphons 

• High conductivity foam saddles for CTE 

mismatch 

• High conductivity GFRC fins 

• Aluminum honeycomb to provide stiffness 

to the structure 

• Titanium heat exchanger 

• Annular heat pipe evaporator 

• Coiled adiabatic section to accommodate 

the C.T.E. mismatch 

• Wick design to allow the heat pipe to 

operate when tilted, and to start-up from a 

frozen state when the excess water is 

frozen in an arbitrary position. 
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Radiator Panel

Evaporator

Adiabatic 

Coil

NCG Reservoir

Coolant Channel
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Radiator Trade Study – Heat Exchanger 

• Water heat exchanger 

between coolant line and 

VCHPs 

– Annular Evaporator  

– POCO Foam Saddle 

– Submerged Evaporator 

• Conduct trade study for each 

design to reach the highest 

specific power.  

• Annular evaporator has 

highest specific power 

– Larger evaporator area 

– Provides micro-meteorite  

protection 
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Dual Coolant Channels 

 Most important benefit is the much larger evaporator area 

 Reduces temperature drop through the VCHP 

 After the trade study, a VCHP radiator was fabricated and tested 

• Benefits to Annular Design 

 MMOD Protection 

 Larger primary Wick Area 

 Utilizes dual coolant 

channels to allow 

evaporator length to 

exceed distance between 

VCHPs 

 Weld Failure would not 

make the entire design fail.  
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CTE Mismatch 

• Ti CTE: 8.6 μm/m K, GFRC 

matches CTE along heat pipe 

axis 

• Negative CTE in GFRC 

perpendicular to heat pipes 

• Coiled Adiabatic to accommodate 

CTE mismatch 

15 

(a)

(b) (c)
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Freeze/Thaw and Start-up 

• Presence of a non-condensable gas improves the freezing 

profile. 

– Shuts down condenser as the pipe is frozen 

– Maintains a higher working fluid temperature as freezing is approached 
• Compared to a Constant Conductance Heat Pipe (CCHP). 

– Restricts vapor movement in the condenser 
• Driving mechanism is diffusion only. 

• Restart chances increase with non-condensable gas mass. 

– Condenser shuts down faster and working fluid temperatures remain 

higher. 

• Large condenser to evaporator length ratios improve restart 

chances. 

– Less likely that the condenser will be blocked by freezing working fluid. 
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VCHP for Freeze/Thaw Testing 

• Titanium/Water VCHP with annular 
evaporator 

• Primary and secondary wick added in 
evaporator to allow for operating in a 
tilted environment 

• Freeze excess liquid in arbitrary 
position 

Test Run Condenser Angle Evaporator Angle 

1. Normal Operating Position 90° - 

2. Slightly Gravity Aided 10° 0° 

3. Horizontal 0° 0° 

4. Slightly Against Gravity -10° 0° 

5. Half Against Gravity -45° 0° 

6. Upside Down -90° - 

7. Rotated Horizontally 0° 90° 

8. Rotated Slightly Horizontally 0° 10° 

9. Rotated Half Horizontally 0° 45° 

10. Combination -10° 10° 

11. Combination 2 -45° 45° 
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 Freeze Thaw Testing – Startup 

 Successful startup at all positions with similar profiles 

 Freeze free liquid in an arbitrary position 

 Primary/Secondary Wicks held enough liquid to allow VCHP to operate at 

correct temperatures with no dryout 

 Results above for a 15 day freeze (lunar night) 
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VCHP Radiator Panel 

• Full Size Radiator Panel with 5 

VCHPs was fabricated and tested 

• Reservoir bent to minimize overall 

panel size 

Aluminum Honeycomb

Graphite Fiber Reinforced Composite

Radiator Facesheet

Titanium Evaporators

(Not Shown)

Titanium NCG Reservoir

POCOFoam Condenser Saddles
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Full-Scale Heat Throughput Test 

• Q = 3.0 kW – entire radiator panel 

• ΔT ≈ 3 °C – evaporator to condenser 

• ΔT ≈ 4 °C – condenser to facesheet 

• ΔT ≈ 45 °C – across radiator 

facesheet 

115.0 

 

103.9 

 

92.8 

 

81.7 

 

70.6 

Radiator Facesheet Temperatures 
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Shutdown 

• VCHPs shut the radiator panel shut off when temperature was 

lowered to 25-30°C 

• VCHP Radiator was then thermal vacuum tested at NASA Glenn* 

– Operation 

– Freeze/Thaw 

 *Jaworske et al., “Heat Rejection from a Variable 

Conductance Heat Pipe Radiator Panel”, NETS 

2012  
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VCHP Radiator Conclusions 

• A VCHP radiator was developed with titanium/water thermosyphons, 

and unheated reservoirs 

– GFRC panels, POCO foam saddles, aluminum honeycomb 

– Annular heat pipe evaporator 

– Coiled adiabatic section to accommodate the C.T.E. mismatch 

– Wick design to allow the heat pipe to start-up from a frozen state when 

the excess water is in an arbitrary location 

• Full-length VCHP radiator was fabricated 

– Rejected 3 kW with a fully open condenser at operating conditions 

– Shut down and blocked condenser when coolant temperature lowered to 

25ºC 

– Demonstrated ability to start-up after multiple freeze/thaw cycles 

• Future Work 

– Recently started a Phase I program to examine single facesheet designs, 

eliminating the POCO foam saddles 
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VCHPs for Balloon Instruments – Motivation 

• Terrestrial high altitude balloons operate for weeks with minimal electrical 

power 

• Payloads need a Thermal Management System (TMS) to: 

– Reject waste heat  

– Maintain a stable temperature as the heat sink (air) temperature swings 

between -90°C to 40°C 

– If active, the TMS should use minimum power 

– Low budget imposes a low cost TMS 

• Current solution: copper constant conductance heat pipes (CCHPs) move 

the waste heat over long distances 

– Problem: Conductance cannot effectively be reduced under cold operating or 

cold survival environment conditions without expending significant energy in an 

active heater to keep the condenser warm. 

• New Solution: A Variable Conductance Heat Pipe (VCHP) will passively 

adjust thermal resistance to maintain instrument’s temperature within the 

required range while heat sink and/or power vary.  
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Potential VCHP Configurations 

• A low-cost VCHP that is capable 

of passively maintaining a 

relatively constant evaporator 

(payload) temperature while the 

sink temperature varies between 

-90 and 40°C 

• Two potential VCHP evaporator 

– condenser – reservoir 

arrangements have been 

considered 

– Cold reservoir near the condenser 

– Warm reservoir near the evaporator 

 

 
 

 

Parameter Value 

VCHP Total Length  [in] 30 

VCHP OD [in] 0.5 

VCHP ID [in] 0.46 

Evaporator Length [in] 6 

Condenser Length [in] 12 

Adiabatic Zone Length [in] 12 

Reservoir OD [in] 2.5 

Reservoir Length [in] 6 

Condenser – Reservoir Connecting Tube Length 

[in]  

3…24 
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VCHP Benefits 

• Potential Benefits, based on a preliminary investigation: 

– Payload protection against low temperatures 

– Passive thermal control  

– No power required  

– Reliable 

– Relatively tight payload temperature control,  

• ~ 5°C with methanol and warm reservoir while the ambient sweeps the 

entire range of -90°C to +40°C  

• Can be further improved by optimizing the VCHP geometry (reservoir and 

tubing size) & by using a working fluid with an even more suitable vapor 

pressure curve  

– Low cost (low cost materials, simple geometry, high manufacturability, non-

exotic fluids) 

– Low mass 

– Compact, simple and flexible geometry 
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Envelope, Working Fluids & NCG Selection 

• The criteria in choosing the envelope and 

wick materials for this particular application 

would be: 

– Compatibility with the working fluid 

– Low price 

– Low thermal conductivity (to better control 

the heat flow) 

– High structural strength (to allow thin walls 

that in turn allow low mass and better control 

of the heat flow) 

– Manufacturability (low cost fabrication price) 

• A fluid must be chosen that is compatible 

with the VCHP envelope & wick for a 

potentially long operating life 

– Potential working fluids: methanol, toluene, 

pentane, propylene and ammonia 

– NCG: Argon, Neon, Helium 

Envelope 

Material 

Compatible Incompatible 

Titanium  

Water 

Methanol 

Ethanol 

Acetone 

Ammonia 

Stainless Steel  

Methanol 

Ethanol 

Pentane 

Toluene 

Copper 

Acetone 

Methanol 

Water 

Toluene 

Ammonia 

Aluminum  

Nickel 

Stainless Steel 

Ammonia 

Benzene 

Naphthalene 

n-Pentane 

Toluene 

Water 

Alcohols 

Acetone 
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Envelope, Working Fluids & NCG Selection 

• The results of the down selection show 

that stainless steel should be used as the 

envelope & wick materials 

– Working fluids that are compatible with 

this material are methanol, pentane and 

toluene 

• Assuming that the vapor temperature 

(payload temperature) will always be 

within the range of -5 to 50°C, methanol 

shows slightly better heat transfer 

properties 

• The pressure differences for pentane and 

methanol vary over the altitude and 

payload temperatures 

– In a worst case scenario, methanol shows 

a small advantage 
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Performance Depends on Configuration/Fluid/Reservoir Size 

• Evaporator temperatures variation as the sink temperature sweeps the 

entire Heat Sink Temperature Interval 

– Warm Reservoir (Configuration 1) shows tighter temperature control than 

Configuration 2 

– Methanol and toluene show best temperature control  
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VCHP Performance vs. Reservoir Size 

• Maximum evaporator temperature swings (as the sink temperature 

sweeps the entire HSTI) as a function of reservoir size. 

– Configuration 1 can reach relatively tight temperature control with reasonable 

reservoir size  

– Methanol and toluene show best temperature control  
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Proof-of-Concept VCHP Design 

• Based on flat front theory model two reduced scale systems were designed: 

– Configuration 1 – Reservoir attached to evaporator 
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Proof-of-Concept VCHP Design 

– Configuration 2 – Reservoir attached to condenser 
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Testing Setup 

• Configuration 1  Configuration 2 
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Experimental Results 

• Each VCHP configuration was tested with all three working fluids: 

– Methanol 

– Toluene 

– Pentane 

• Three types of tests were conducted: 

– Power test (only configuration 2 with methanol) 

– Thermal control test (all combinations) 

– Survival test (only configuration 2 with toluene) 

• Sink temperature = -90ºC 

• It shows a very long survival time – temperature dropped from 48ºC to 

20ºC in ~ 13000 sec. 

• Configuration 1 (Warm Reservoir) provides the best temperature control 

• All the results show very good agreement with the predictions 
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VCHP Cold Reservoir (Methanol) – Power 

• 300 W – 

maximum power 
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Cold Reservoir (Methanol) – Thermal Control 

• Constant Power (100 W) 

• Variable Sink Temperature 

• Evaporator Temperature dropped by only ~ 21ºC as the sink temperature 

went from +30°C to -90°C 
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Cold Reservoir (Methanol): Constant power (100 W), Variable Sink 
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Cold Reservoir (Toluene): Survival Test 

• Power = 0 W (neglects heat leak from ambient) 

• Sink Temperature = -90ºC 
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Cold Reservoir (Toluene): Survival Test 
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• Steady State Temperature Profiles 

• Constant Power (100 W) 

• Variable Sink Temperature 

Warm Reservoir (Methanol) – Thermal Control 
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Warm Reservoir (Methanol): Constant power (100 W), Variable Sink 
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Control with Variable Sink Temperature 

• Evaporator Temperature Change as Sink Sweeps the HSTI 

• Constant Power (100 W for Methanol and 70W for Toluene and Pentane) 

• Variable Sink Temperature 
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Balloon VCHP Experimental Results 

• Six Configurations were Tested: 

– Configuration 1 (Warm) with methanol, 4.8ºC temperature control band 

– Configuration 1 (Warm) with toluene, 6.2ºC temperature control band 

– Configuration 1 (Warm) with pentane, 3.7ºC temperature control band 

– Configuration 2 (Cold) with methanol 21ºC temperature control band 

– Configuration 2 (Cold) with toluene 23ºC temperature control band 

– Configuration 2 (Cold) with pentane 36ºC temperature control band 

• Survival test was carried only for Configuration 2 with toluene  

– Sink temperature = -90ºC 

– It shows a very long survival time – temperature dropped from 48ºC to 20ºC in ~ 13000 

sec. 

• Configuration 1 (Warm Reservoir) provides the best temperature control 

• All the results show very good agreement with the predictions 

Working Fluid → Methanol Toluene Pentane 

Configuration Predicted Measured Predicted Measured Predicted Measured 

VCHP Configuration 1 47..50ºC 45.3..50ºC 46.9..50ºC 43..50ºC 45.2..50ºC 46.3..50ºC 

VCHP Configuration 2 30.8..50ºC 30.4..50ºC 30.3..50ºC 26.2..50ºC 17.4..50ºC 14..50ºC 
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Conclusions 

• In addition to precise temperature control, VCHPs can be used for: 

– Variable Thermal Links 

– Frozen Start-up 

– Over-Temperature Protection 

• Reservoirs normally not electrically heated 

– Cold reservoir at condenser 

– Warm reservoir at evaporator 

• Two applications were discussed 

– VCHP Radiator for Lunar and Martian Fission Power Systems 

• 2 m long titanium/water thermosyphons, cold reservoir 

• Successfully demonstrated shut down and freeze/thaw 

– VCHP Variable Thermal Links for Balloon Instrumentation 

• Heat sink range of 130°C (-90°C to 40°C) 

• Warm reservoir near evaporator had a ΔT of 3.7°C 

• Cold reservoir near condenser had a ΔT of 21°C 
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