Numerical simulations of supersonic film cooling for liquid rocket nozzle applications: A validation study

Salman Verma, Chandan Kittur, Colin Adamson, Arnaud Trouve & Christopher Cadou

University of Maryland, College Park

Joseph Ruf

NASA MSFC
Introduction
• **J-2X nozzle extension**
 - $dP/dx \neq 0$
 - $M_1 = 3.74$,
 - $T_1 = 3767 \text{ K}$,
 - $P_{01} = 82 \text{ atm}$
 - $M_2 = 1.84$,
 - $T_2 = 539 \text{ K}$,
 - $P_{02} = 2.4 \text{ atm}$

• **UMD tunnel**
 - J-2X relevant conditions
 - Core $Ma = 2.4$
 - Film Ma
 - 0, 0.5, 0.7 & 1.2
Motivation

• **Some previous studies** - Weighardt (ZWB, 1900, 1946), Lucas et al. (NASA, TN D-1988, 1963), Goldstein (Advances in Heat Transfer, 1971), Aupoix et al. (AIAA, 36, 1998) & Konopka et al. (AIAA 2010-6792)

• More experimental data is needed to adequately validate CFD codes for supersonic film cooling
 – E.g., most studies do not provide flow profiles, with no study providing minimally-intrusive flow profiles

• **RANS and LES techniques should be further tested to assess performance for film cooling flows**
Objective

• Develop a detailed understanding of film cooling fluid dynamics so that predictive CFD approaches can be developed
 – Generate a database of measurements in ‘J-2X’ relevant model problems*** that can be used for CFD validation
 – Thorough assessment of RANS (using Loci-CHEM) and LES (using OpenFOAM)

***Model problems
 – Film cooling over a flat plate at constant pressure
 – Film cooling over a flat plate with a pressure gradient
Experimental heat flux
• **Inverse modeling** - measure temperature inside the solid and reconstruct unknown wall heat flux
Heat flux determination procedure

• Divide the measured temperature data into several sections
• Tune heat flux at the surface for reproducing the measured temperature inside the solid
 — Done using the bisection method with a 1D finite difference based conduction solver
Reynolds Averaged Navier Stokes (RANS) simulations:
Loci-CHEM
RANS: boundary conditions & mesh

$T_0 = 295 \text{ [K]}$

$P_0 = 1 \text{ atm}$

$T_{wall} = 333 \text{ [K]}$

$T_{wall} = 333 \text{ [K]}$

$T_0 = 323 \text{ [K]}$
RANS vs experiments: schlieren

Experiments

RANS

Ma_{film} = 0

Ma_{film} = 0.5
RANS vs experiments: schlieren

Experiments

\[Ma_{\text{film}} = 0.7 \]

RANS

\[Ma_{\text{film}} = 1.2 \]
RANS vs experiments: lower wall heat flux
RANS vs experiments: upper wall heat flux

Ma_film = 0

- Heat flux \([\text{kW/m}^2] \)
- \(x/S \)

Ma_film = 0.5

- Heat flux \([\text{kW/m}^2] \)
- \(x/S \)

Ma_film = 0.7

- Heat flux \([\text{kW/m}^2] \)
- \(x/S \)

Ma_film = 1.2

- Heat flux \([\text{kW/m}^2] \)
- \(x/S \)

Experiment
RANS (Loci-CHEM)
Discrepancies - why?

- **Possible reasons and solutions**
 - Limitations of **RANS models** e.g., difficulty in handling variable density flows
 - LES
 - **Fixed temperature BC** for heated walls
 - Conjugate Heat Transfer (CHT)
 - Relatively new **inverse modeling code**
 - Check effects of different parameters
 - **Experiments**
 - Understand the instrumentation better
Large Eddy Simulations (LES): OpenFOAM
Why OpenFOAM?

• Getting very popular in
 – Academia &
 – Industry

• Why?
 – Free
 – Open source
 – Easy to extend/develop
 – Several models for e.g., turbulence, combustion
 – Unstructured meshes
 – Scalability up to 1000s of CPUs

http://openfoam.com/
LES: inflow schematic & sponge layer

2D RANS

2D profiles of U, k, ω and R

Synthetic Eddy Method (SEM)

LES

Sponge layer
Coarse LES: wall heat flux contours

Temperature [K]
(front view)

Lower wall heat flux [kW/m²]
(top view)

Ma_{film} = 0

Ma_{film} = 0.5

Ma_{film} = 0.7

Ma_{film} = 1.2
LES: domain size & resolution

<table>
<thead>
<tr>
<th>cell count (million)</th>
<th>L_{span} (in S)</th>
<th>Δx^+</th>
<th>Δy^+</th>
<th>Δz^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2.2</td>
<td>30</td>
<td>2.5-20</td>
<td>25</td>
</tr>
</tbody>
</table>

\[
\Delta x^+ + \Delta y^+ + \Delta z^+ + 13 = 2.2 + 30 + 2.5 - 20 + 25
\]
LES vs experiments: lower wall heat flux

Ma_{film} = 0

Ma_{film} = 0.5

Ma_{film} = 0.7

Ma_{film} = 1.2

Heat flux [kW/m²]

Heat flux [kW/m²]

x/S

x/S

Experiment

RANS (Loci-CHEM)

Preliminary LES (OpenFOAM)
Concluding remarks

• RANS (Loci-CHEM)
 - Flow structures in reasonable agreement with experimental data
 - Comparison with experimental heat flux profiles not impressive
 • Disagreement worse on the upper wall

• LES (OpenFOAM)
 - Providing high resolution insight into the film cooling dynamics
 - Preliminary LES shows improvement over RANS
 - Higher resolution simulations expected to provide more accurate results
Future work

- Heat flux determination (or inverse modeling) procedure
 - Check sensitivity to different parameters e.g., number of divisions

- Reynolds Averaged Navier Stokes (RANS) simulations
 - Understand the source of discrepancies in heat flux profiles
 - Conjugate heat transfer

- Large Eddy Simulations (LES)
 - Conduct higher resolution simulations
 - Larger span size
 - Resolve the upper wall
Acknowledgements

• The authors would like to thank NASA and Melinda Nettles of the Marshall Space Flight Center for their support.

• Computational resources were partially provided by UMD and by XSEDE (which is supported by NSF)
Thank you; questions?
Back up slides
LES: domain

- Can not do LES of the full domain (high computational cost)
- Reduced domain needed
- But inflow fluctuations become important with reduced domain due to relatively high turbulent kinetic energy
LES: inflow (Synthetic Eddy Method)

- Jarrin et al. (IJHFF, 27, 2006)
- Velocity signal – sum of synthetic eddies with random position & intensity
- Eddies convected in a virtual streamwise periodic domain around the inlet boundary
- Synthetic eddy characteristics determined e.g., from a RANS solution
LES: inflow validation

- Synthetic Eddy Method (SEM)
 - Inlet signal evolves into a natural turbulent signal in roughly $15 \times \delta$
- Random noise at the inlet
 - Inflow signal is damped by the solver and flow re-laminarizes
- Consistent with Jarrin et al. (IJHFF, 27, 2006)
To avoid reflections from the outlet a **sponge layer** (grey) was used.

Flow fluctuations are damped in the sponge layer by source terms before it leaves the domain.

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) &= \sigma (\rho_{\text{ref}} - \rho), \\
\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_i u_j + p \delta_{ij} - \tau_{ij}) &= \sigma [(\rho u_i)_{\text{ref}} - \rho u_i], \\
\frac{\partial E}{\partial t} + \frac{\partial}{\partial x_j} [(E + p) u_j + q_j - u_k \tau_{kj}] &= \sigma (E_{\text{ref}} - E),
\end{align*}
\]

Tested on the shock-vorticity/entropy wave interaction problem from Johnsen et al. (JCP, 229, 2010).