System trade-off analysis of two-phase mechanically pumped fluid loop for thermal control of future deep space missions

Kenichi Sakamoto
Takurou Daimaru
Hiroki Nagai
(Tohoku University)

Presented By
Kenichi Sakamoto

Thermal & Fluids Analysis Workshop
TFAWS 2016
August 1-5, 2016
NASA Ames Research Center
Mountain View, CA
Future deep space missions

• Exploring to the outer space
 – Extreme environment
 – Low solar power

• Requirements for thermal control system
 – Low power consumption & waste heat reclamation
 – Light weight system
 – Keeping science instruments isothermal

• Current thermal control technology
 – Loop Heat Pipe
 • Flight system integration and distance issues, Evaporator shape
 – Single-Phase Mechanically Pumped Fluid Loop
 • Large ΔT in cold plate and across loop, large mass

• Two-Phase Mechanically Pumped Fluid Loop
 – Potential ability to meet requirements
Two-Phase Mechanically Pumped Fluid Loop

• **Working Principle**
 – Fluid driven by pump
 – Liquid absorbs heat in evaporator and changes to two-phase flow
 – Two-phase flow dissipates heat in condenser and changes to liquid
 – Accumulator controls temperature

• **Merits**
 – Pump driving
 • Long heat transport distance
 • Robust start-up
 – Phase change
 • Light weight
 • Low power consumption
 • Small ΔT on the evaporator

<table>
<thead>
<tr>
<th></th>
<th>LHP</th>
<th>SPMPFL</th>
<th>2PMPFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>✗</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Robustness</td>
<td>△</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Isothermality</td>
<td>△</td>
<td>✗</td>
<td>〇</td>
</tr>
<tr>
<td>Low mass</td>
<td>〇</td>
<td>✗</td>
<td>〇</td>
</tr>
</tbody>
</table>

TFAWS 2016 – August 1-5, 2016
Researches

• Experiment project at JEM in ISS
 – To clarify effects on heat transfer and critical heat flux in flow boiling

• AMS-2
 – The first full-size 2PMPFL in space
 – Searching for dark matter at ISS
 – The working fluid is CO₂

• Working fluid selection
 – A lot of criteria
 • Heat transport performance
 • Mass of system
 • Power consumption of pump
 • Others…

• Problem
 – Considering whether the working fluids satisfy the requirements of system

Figure of Merit of low pressure drop
H.J. Gerner et al,
ICES-2014-136, 2014
Evaluating the working fluids by total mass of system with 1D steady model of Two-Phase Mechanically Pumped Fluid Loop

- Contents
 - Evaluating method
 - Mathematical model of 2PMPFL
 - System analysis
 - Evaluating the working fluid
Evaluating method

• Requirements
 – Heat input 500W
 – Payload bench 0.5m²
 – Spatial uniformity on evaporator < 3°C

• Constraint
 – Mass without evaporator and radiator <10kg
 *Evaporator and radiator are made with structure panel of spacecraft

• Objective function
 – Mass of system
 \[M_{system} = F(\lambda, \rho, \mu, c_p, k, T, P, \sigma) \]
 \[M_{system} = M_{pump} + M_{accumulator} + M_{fluid} + M_{tube} \]
Mathematical model of 2PMPFL
• Assumptions
 – Not considering conduction of tube wall
 – Not considering degree of super heat for boiling
 – Constant heat flux in evaporator

• Modeling
 1. Input assumed pressure and temperature
 2-4. Liquid evaporates in the evaporator
 5. Two-phase flows into radiator
 5-7. Two-phase is cooled by radiator
 8. Accumulator controls the temperature
 9. Pump provides the driving pressure
 1. New initial value
Equations

- **Single-phase**
 - Pressure: \(P_{SP}^i = P_{SP}^{i-1} - \frac{f_{SP}L\rho_{SP}u_{SP}^2}{2D_h} \)
 - Temperature: \(T_{SP}^i = T_{SP}^{i-1} + \frac{Q_{in}}{mC_{p,SP}} \)

- **Two-phase**
 - Pressure: \(P_{2P}^i = P_{2P}^{i-1} - \left\{ \left(1 + x \frac{\rho_l - \rho_g}{\rho_g}\right)\left(1 + x \frac{\mu_l - \mu_v}{\mu_v}\right)^{-0.25} \right\} \frac{f_l\rho_l u_l^2}{2D_{in}} \)
 - Temperature: \(T_{2P}^i = T_{sat}(P_{2P}^i) \)
 - Quality: \(x = \frac{H^{i-1} + \frac{Q_{in}}{m} - H_{sat,l}}{\lambda} \)
Evaporator Design

• Requirements
 – Large flat area for flexible heat load placement
 – Dimensionally and temporally isothermal benches for science instruments

• Design
 – Wick structure for uniformly supplying the liquid
 – Heat is transferred through the pillars
 – Liquid evaporates at the whole area
 – Subcooled liquid is heated in wick and liquid chamber

Evaporator design
Eric Sunada et al, ICES-2016-129, 2016
• Assumption
 – All heat input is consumed for temperature rise and evaporation of fluid
 – All heat is transferred through the pillars
 – Liquid flows uniformly through the wick
 – Retreat of the meniscus in the wick is neglected
 – Pressure at the vapor-liquid junction is equal to pressure of the liquid
• **Modeling**

1. Liquid flows into evaporator
2-3 Some liquid flows top of evaporator
 - Temperature of liquid rises by heat leak \(T_3 = T_2 + \frac{Q_{HL}}{m_l c_p} \)
4. The wick absorbs the rest of liquid
 - Heat input evaporates liquid at the surface of wick
4-5 Vapor flows bottom of wick
6. Liquid and vapor are mixed
 - \(T_6 = T_3 \), \(P_6 = P_3 \)
• Modeling
 – Tube-on-plate radiator
 – One side radiating to the cold space
 – Area is enlarged to fulfill the Net Positive Suction Head (NPSH) requirement
• Modeling
 – Accumulator size is driven by these two cases
 • Startup = Liquid occupies the entire loop with some reserve fluid in accumulator (β)
 • Worst hot case = Vapor volume is maximized with some reserve vapor space in accumulator (α)

→ Calculating the accumulator volume

\[V_{acc} = \frac{V_{2\phi} + V_{evap,vapor} + V_{rad}}{\alpha - \beta} \]
Mass calculation

- **Pump**

 \[M_{\text{pump}} = 0.25W_{\text{pump}} \]
 (Power: \(W_{\text{pump}} = \frac{\Delta P \dot{m}}{\rho \eta_{\text{pump}}} \))

- **Accumulator**

 \[M_{\text{acc}} = \rho_{\text{acc}} \pi \delta_{\text{acc}} D_{\text{acc}} L_{\text{acc}} \]
 (Thickness: \(\delta = \frac{PD_{\text{out}}}{2(S+0.4P)} \))

- **Fluid**

 \[M_{\text{fluid}} = \rho_l (0.15V_{\text{acc}} + V_{\text{tube-in}} + V_{\text{evaporator}}) \]

- **Tubing**

 \[M_{\text{tube}} = \rho_{\text{tube}} V_{\text{tube}} \]

Not including the mass of evaporator and radiator which is made with panel of structure.
System analysis
Calculating condition

• Inputs
 – Fluid: Ammonia
 – Mass Flow rate: 0.003kg/s
 – Whole loop
 • Thermal transporting length: 1.7m
 • Inner diameter of pipe: 3.87mm
 • Outer diameter of pipe: 6.35mm
 – Evaporator
 • Heat load: 500W
 • Temperature of surface: 20°C
 • Area: 0.5m²
 • Wick pore diameter: 60μm
 • Pillar: 7.87 × 7.87 × 5.08mm³
 – Radiator
 • Sink temperature: 4K
 • Length of fin: 25.4mm
 • Thickness of fin: 1mm
 – Pump
 • Net Positive Suction Head: 138kPa
Results: Whole loop

- Radiator length → Mass of Tubing, Fluids
- Absolute pressure → Mass of Accumulator
- Pressure drop → Mass of Pump
Results: Evaporator

- Liquid is heated from subcooled to saturation
- Spatial temperature of surface fulfills the requirement $< 3^\circ\text{C}$
• Total Mass is 9.96 kg
• Mass of fluid is the largest
Evaluating the working fluid
Working fluid selection

• Criteria
 – Saturation pressure < 1.4 MPa at 20 °C
 – Freezing point < -70 °C
 – Availability

• Working fluids
 – AMMONIA – BUTANE
 – R12 – R245FA
 – R134A – R245CA
 – R152A – R114
 – R124 – R11
 – ISOBUTANE – R123
 – R142B – R141B
 – C318 – R113
 – R236FA – PROPYLENE
 – WATER
Fluids occupy the mass of system

Density of working fluid is critical for mass of system

Propylene, Isobutane, Ammonia and Butane fulfil the requirement of mass < 10kg

<table>
<thead>
<tr>
<th>Name</th>
<th>Density [kg/m³] (at 20 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPYLENE</td>
<td>515.02</td>
</tr>
<tr>
<td>ISOBUTANE</td>
<td>557.04</td>
</tr>
<tr>
<td>AMMONIA</td>
<td>610.42</td>
</tr>
<tr>
<td>BUTANE</td>
<td>578.76</td>
</tr>
<tr>
<td>R152A</td>
<td>912.34</td>
</tr>
<tr>
<td>R134A</td>
<td>1225.9</td>
</tr>
<tr>
<td>R124</td>
<td>1372.9</td>
</tr>
<tr>
<td>R236FA</td>
<td>1377.2</td>
</tr>
<tr>
<td>R123</td>
<td>1477.0</td>
</tr>
</tbody>
</table>
Conclusion

• Evaluating the working fluids by total mass of system with 1D steady model of 2PMPFL
 – 1D steady 2PMPFL model for mass of system is developed
 – System analysis has been done.
 – Evaluating the working fluid
 • Working fluid drives the mass of system with the assumed evaporator design.
 – Density of working fluid is the key factor of mass of system
 • Propylene, Ammonia, Isobutane and butane fulfil the requirement of mass < 10kg

Acknowledgement

We are grateful to Eric Sunada, Pradeep Bhandari, Benjamin Furst and Stefano Cappucci.

This study was supported by IFS Graduate Student Overseas Presentation Award.