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Background

« Conventional spacecraft thermal management
— Capillary systems

e Constant Conductance Heat Pipes (CCHP), Loop Heat Pipes (LHP),
Capillary Pumped Loops (CPL)

— Actively pumped single phase systems

SINGLE PHA
COLD PLATE

LOOP HEAT PIPE
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 Much higher heat capacity per unit mass
— Latent heat of R134a is ~150X that of specific heat
— Smaller flow rates = less system mass

e |sothermal heat transfer
— Upstream heat loads won't affect coolant
temperature available to downstream
heat loads
— Components can share thermal energy

 Enhanced heat transfer
— Much higher heat transfer coefficients

— Handles higher heat fluxes
_ Tighter packaging Two-phase flow during reduced gravity

_ testing aboard the NASA C-9
e Tolerant of higher pressure drop

— Much greater transport length than capillary two-phase systems

— Enables the use of advanced heat exchangers with higher pressure
drops

TFAWS 2016 — August 1-5, 2016 3



System Concept

o Separate single phase
components from two-phase
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— In series and parallel
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« Centripetally accelerates flow to produce a forced vortex inside a fixed
cylinder

* Vapor moving with the vortex experiences centrifugally-driven buoyancy
— Liquid separates to the wall, vapor moves to the center
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e Liquid layer can be of varying thickness
— Allows MVS to accumulate either fluid

— Acoustic sensors can monitor liquid thickness to determine
accumulated volume

1 - DRIVING NOZZLE 4 - LIQUID OUTLET 7 - GAS CORE

2 - SECONDARY INLET 5 - BAFFLE PLATE 8 -LlQUID LAYER
3 - GAS OUTLET 6 - ACOUSTIC SENSOR 9 - FLUID INTERFACE
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Fabricated MVS

 3in. diameter, 4 In. tall

Gas Outlet

e 4inlets

— 2 from evaporator legs

— 1 from condenser

— 1 auxiliary driving nozzle —_— 1
e Aluminum and tingiHiniel) S \ ;o

.- 1

Polycarbonate .-?;;\Uquidomlet

e Working fluid R134a LS =" 4
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Eductor

A Commercial-Off-The-Shelf eductor was used for the demonstration
unit
Venturi pump

— Accelerates a motive fluid (liquid in this case)

— Reduced pressure resulting from the high velocity of the motive fluid entrains the
suction fluid (also a liquid)

— The fluids mix and exchange kinetic energy
— The mixture then expands before exiting the device, recovering pressure
Passive and can pump both phases in the case of a separation failure

The liquid outlet eductor provides NPSH for the liquid pump

1 - MOTIVE NOZZLE

2 - ENTRAINMENT FLOW
INLET

3 - MIXING SECTION

4 - PRESSURE
RECOVERY SECTION

5- OUTLET
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Evaporator Array

 Each cold plate has two parallel serpentine channels
 Two cold plates in series, one in series with these
 Aluminum heated surface with polycarbonate face for visualization
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Experimental System

e Tested at constant flow rate for varying thermal loads
— 130 W increments up to 1170 W for each cold plate
— Cold plates tested separately, in series, and in parallel
— Cold plates shut off and on to observe changes in other cold plates

MVS

Evaporator Array
Centrifugal Pump
Condenser
Eductor 1
Eductor 2

TFAWS 2016 — August 1-5, 2016 10



Observations

No instabilities observed in the
cold plates

— Unique channel design suppressed
instabilities associated with changes
in thermal load and pressure drop

Separator distributed phases
despite changing heat loads

— And therefore changing vapor/liquid
volumetric flow rates

Eductors removed vapor and
liquid from the MVS at intended
rates

No vapor entered the single-
phase pump

Over 3 kW of heat was rejected
across the 3 cold plates
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« Thermal imaging and temperature data showed less than 2 K
temperature difference across the cold plate

— Further optimization could improve this gradient
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(650 W heat input)
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Input change of 130 258 .S 3 .
pras abc?ut 20 256 | .‘"%;. ,.\‘:’“,-}"?‘:,.%,‘ 3 %3:.,1"‘.:.;"
minutes e ‘.,.:’i? w X .
20 minutes of steady R
state data recorded ¥
. £ 25 gpete
e Some variation was g s
seen after steady g “°
state § 246
— Approximately 0.5 K 2.4
« Temperature was 22
seen to increase with ”
heat input 3000 3500 Tt:fnoeo(s) 4500 5000

TFAWS 2016 — August 1-5, 2016 13



* Pressure drop .
Increased with total
heat input

— 1lpsi@ 130 W
— 64psi@ 1170 W

— Result of increasing
average void
fraction

— After dryout (1170
W), pressure drop
IS constant 0

Average Pressure Drop across Cold Plate (psi)
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Liquid Outlet Eductor Flow Rate Data

(650 W heat input) for each cold plate

Motive and suction
flow rates are nearly
equivalent

— 1:1 entrainment ratio

Outlet flow rate is
nearly double the
motive and suction
flow rate
— Expected as this is a
combination of the
suction and motive
flow rates
— Discrepancy
attributable to
measurement error
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(650 W heat input) for each cold plate

Motive flow rate Is

approximately twice

the suction flow rate
— 2:1 entrainment ratio

— Result of operating at
a lower motive
pressure than the
liquid outlet eductor

Outlet flow rate is
nearly double the
motive and suction
flow rate

Flow Rate (LPM)
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Conclusion

Demonstrated several components working together in a two-
phase system

— Single-phase pump

Eductors
Two-phase cold plates
Momentum-driven Vortex Phase Separator

Stability observed while rejecting over 3.5 kW of heat over 3
cold plates

The liquid pump did not cavitate or receive vapor
The pump provided motive flow to the eductors
The eductors removed liquid and vapor from the separator

The separator managed phases with changing heat load (O to 3.5
kW)

Eductors moved vapor and liquid to the condenser and evaporator,
respectively

Cold plates showed no signs of instability during testing
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