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Application

— Transport heat from a heat
source to a heat sink over a
large distance

 No External Pumping Power

— Waste heat provides the driving
force.
« No Moving Parts
« Robust Operation
— Passive
— Self-regulating
« High Pumping Capability
« High Thermal Conductance
« Smooth-walled and flexible

transport lines provide flexibilities
for design, integration and testing.
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Traditional Loop Heat Pipe
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INDIVIDUALLY COOLED SENSORS
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Traditional Cryocooling of Sensors

Unwanted vibration induced
by the mechanical
cryocoolers may cause
unacceptable jitter to the
telescope.

Packaging and integration
are difficult in tight spaces
especially when two or more
cryocoolers are needed for
redundancy.

Heat parasitics from one
Inactive cryocooler may
overload the active ones.
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Cooling with Cryogenic LHP

Jitter-free observations of the
telescope at a target may prove
Invaluable for most space
missions.

A flexible heat transport device is
therefore needed to provide a
cryogenic link between the IR
sensors and cryocoolers.

CLHP with flexible transport lines
provides the needed vibration
Isolation.



Coefficient of thermal expansion
mismatch between the wick and
the evaporator shell

Containment of the system
pressure at ambient temperature

Start-up from an initially
supercritical state

Parasitic heat gains along the
liquid return line
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Technical Challenges in CLHP Development
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A tight seal is required in order to
prevent the vapor at the outer
surface of the primary wick from
penetrating into the liquid core of
the evaporator.

A mismatch in the CTEs between
the primary wick and the
evaporator shell over the range
from the ambient temperature to
cryogenic temperature could affect
the required tightness of the seal
between the two components.
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Mismatch of Coefficients of Thermal Expansion
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A minimum amount of the working
fluid is required in order for the CLHP
to operate properly over the desired
cryogenic temperature range.

At ambient temperature, the gas
pressure will be very large, resulting
INn pressure containment issues.

More importantly, if the system
pressure is greater than the critical
pressure of the working fluid, startup
of the CLHP becomes impossible.
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Pressure Containment
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Liguid must be present in the
capillary pump prior to startup.

No liquid will be formed if the
system pressure is greater than
the critical pressure regardless
how low the component
temperature is.

Below the critical pressure, liquid
will be formed at places where the
temperature is lower than the
critical temperature.
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Start-up from an Initially Supercritical State
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Parasitic Heat Gains Along the Liquid Line

« Thereis an inherent heat leak from the
evaporator to the reservoir, and the

reservoir can also gain heat from Heat Input

7

ambient.
Reservoir Capillary Pump
e All heat gains must be compensated
for by the cold liquid returning from the TLiquid vapor|

condenser.

Condenser

 High parasitic heat gains along the I
liquid line will raise the returning liquid Heat Rejection
temperature, and ultimately the
reservoir temperature.

e The CLHP cannot operate when the
reservoir temperature is greater than
the critical temperature.
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LHP Energy Balance LHP
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LHP Operating Temperature

Natural Operating
Temperature

Fixed Operating Temperature

set

CC Temperature
_|

Heating Required

Dad

/
Cooling  Qurow

Req’d Net Evaporator Power

QHigh

« LHP operating temperature, Tg,, IS determined by energy
balance between heat leak and liquid subcooling.

 Tg, changes with the evaporator power, condenser sink
temperature, and ambient temperature.

K2 — 2016



Concept of Advanced LHP
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QR-A
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Advanced LHP for Cryocooling
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Overcoming Technical Challenges of CLHP

A mismatch of coefficient of thermal expansion between
the capillary pump and the primary wick

— Solved by using the same material for capillary pump
and primary wick
 Containment of the system pressure at ambient
temperature

— Solved by using a hot reservoir attached to the CLHP to
reduce the system pressure

o Start-up from an initially supercritical state

— Solved by using a hot reservoir to reduce the CLHP
pressure below the critical pressure

 Parasitic heat gain at cryogenic temperatures

— Solved by applying power to the secondary evaporator
to cool the reservoir
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Start-up of CLHP
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Management of Prarsitics

Reservoir - Reservoir 1
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Pressure Reduction Reservoir

Reservoir
Reservoir 1
| ] St
o 1st Pump o 15t Pump )
£ E 2
= v 2 Cond. 13 T y¢ .
E (L. - " ~
§=) N . = 5 §
- :| ‘ g :{ —L
— | %
::_ 7 n
/ Crvocooler g Cryocooler
! 1st Cond,
1= Cond.” Coldfinger 1*Cond.” cColdfinger |
g Hot Reservow HotReservow
Normal Operation (Pgysrey < 20pSia) Dormancy in Hot Environment

System Pressure > 3,000psia w/o Hot Reservoir
System Pressure < 100psia with Hot Reservoir

Ku —-2016 19



PRESSURE RESERVOIR
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Figure 3 — Schematic of Cryogenic A-LHP
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H2-ALHP COMPONENT SIZING

Component Dimensions

Primary Evaporator

Primary Wick 19mm OD x 4.93mm I.D. x 25.4mm L
3 micron pore radius, 40% porosity, 0.5x1013 m?
permeability

Reservoir 19 mm OD x 254 mm L

Secondary Evaporator

Wick 19mm OD x 4.93mm I.D. x 25.4mm L

Reservoir 19mm O.C. 3 micron pore radius, 45% porosity, 0.5x1013 m?

Xx12.5mmL permeability

Vapor Line 3.18 mm OD x 2.4mm ID x 2500 mm L

Liquid Line 2.38mm OD x 1.6 mm ID x 2500 mm L

Additional Vapor Line

228 MM OD x1.6 mm ID x 2500 mm L

Serpentine Condenser Length

3.18 mm OD, x1.6 mm ID x 812.8 mmL

Length through 2nd
Condenser

6.35 mm OD x 4.93 mm ID x 6152.4 L

Pressure Reduction Reservoir

101.6 MMOD X911 mm ID x677.9 mm L

Ku —-2016
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Advanced Hydrogen CLHP

« Demonstrated successful
startup and stable
operation over
temperature range of 20K
to 30K.

22
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Cooldown of Hydrogen Advanced LHP

The cold finger, secondary condenser, secondary evaporator
temperatures dropped from 280Kto 30K in 4 hours.

The primary evaporator, reservoir, vapor line, liquid line were still

above 160K
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Startup of Hydrogen Advanced LHP

« The primary evaporator, reservoir temperatures dropped below 35K after
2.5W was applied to the secondary evaporator.

« Theloop started successfully by applying 5W to the primary evaporator.

Date: 07/18/01 Note: ‘TV chamber shroud was cooled by LN2
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Temperature (K)

Power Cycle Test of Hydrogen Advanced LHP

Date: 07/20/01

Note: TV chamber shroud was cooled by LN2
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Temperature (K)

Date: 07/16/01

Note: TV chamber shroud was cooled by LN2
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Deprime and Recovery of Hydrogen Advanced LHP

Power (Watts)




Summary of Hydrogen Advanced LHP Operation

The hydrogen advanced LHP worked well in all phases of
operation. It was capable of starting and functioning reliably
even in a very hot (298K) surrounding shroud.

The loop could transport up to 10 watts over a distance of 2.5
meters in 298K shroud.

The loop operation was resilient and robust with respect to
start-ups, rapid power changes, recovery from failures, and
parasitics handling.
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Conclusions

 The feasibility of an advanced LHP concept using a secondary
evaporator and a hot reservoir was demonstrated.

« The advanced LHP can be used cryocooling using various
working fluids.

* In addition to hydrogen advanced LHP, other cryogenic LHPs
using nitrogen as the working fluid were built for across-gimbal
applications. Test results also demonstrated its excellent
performance.

« The design of the hot reservoir can be optimized.
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Questions?
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