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ABSTRACT

A reduced-order modeling approach to predict spacecraft output responses for a set of input factors was developed. It is based on Latin Hypercube sampling and Gaussian Process regression modeling. A test case, based on a simplified Orion Crew Exploration Vehicle Thermal Desktop® model, was developed and included nine input factors and seven output responses. Output response residuals, found for predicted temperatures, hydraulic power, and pressure, had means of 1.6 K, 0.2 W, and 1.6 kPa, respectively. Additionally, these responses had standard deviations of 5.0 K, 1.93 W, and 18.2 kPa, respectively.
INTRODUCTION

Evaluating satellite thermal control subsystem (TCS) performance can be done through physical and/or computer experiments. Although physical experiments provide empirical evidence, they can be expensive. Significant costs can be incurred during fabrication (i.e. time and money) and once built, results are limited by the time it takes to complete all experiments. Additionally, physical experiments are limited by the flexibility of a test setup; consequently, parametric studies can be challenging.

Computer experiments are an attractive option to overcome the challenges of physical experiments. Constructed correctly, computer experiments can easily accommodate parametric studies and are only limited by processing power. They are especially useful during design stages, although they too have inherent costs. Development of a nominal satellite thermal model can take days to weeks to develop with run times on the order of hours. Comparing and evaluating multiple TCS approaches, especially important in early design stages, amplifies these timelines. Considering the myriad TCS design approaches available, computational expense can become unwieldy. For example, consider a TCS design with five design parameters of interest each evaluated at 10 levels. Evaluating each combination of parameters at all levels would require 1.0E5 simulations. At 30 minutes per simulation, this would take over 5 years of computational time. Consequently, there is a need for the development of reduced order satellite models that can capture the effect of a high-resolution computer experiments without incurring significant computational expense. Reduced order models can then be used to evaluate different TCS approaches and provide a relatively quick means of evaluating design trade-offs. 

Reduced-order model development
Computer simulations have been targeted as a replacement to physical experiments for many applications1 because they are more time and cost efficient and can provide valuable insight early in the design stages. However, computer experiments are often complex and computationally expensive. When built to evaluate several variables, these costs can become unacceptable. Consequently, developing reduced-order models that capture the effects of more complicated computer simulations can have a significant benefit. Reduced-order models are based on computer simulations and therefore, should be designed to capture effects of the original model with the fewest number of runs. When properly developed, these surrogate models can predict responses at untested design points very quickly. Computer simulation experiments are uniquely different from their physical counterparts in that they typically have no results variability. Consequently, different approaches to experimentation are used. The following provides an overview of the development of reduced-order models using a Latin Hypercube space-filling approach and Gaussian Process model fitting.
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	Figure 1. Sample Latin Hypercube.


Although full-factorial approaches examine all combinations of variables, they do so only at extreme values (i.e. design space boundaries). Consequently, interior points are overlooked and reduced-order models can often fail far from the boundaries. Therefore, space-filling designs were utilized to efficiently identify and evaluate interior points that would provide improvements in the reduced-order model. Space-filling designs attempt to efficiently evaluate a design space for a given number of computer simulations. Design approaches include: sphere packing, Latin Hypercube, uniform design, maximum entropy, and the Gaussian-Process IMSE designs1. However, Latin Hypercube approaches are the most commonly used for computer experiments1 and were used as the basis for the reduced-order models presented in the current work.

Overview

Latin hypercube sampling selects 
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 non-overlapping intervals on the basis of equal probability. One value from each interval is selected at random with respect to the probability density in the interval. The 
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-tuplets are formed.2 This is the Latin hypercube sample. It is convenient to think of this sample (or any random sample of size 
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, a sample (Figure 1a) is illustrated in Figure 1b. However, there are samples that fill the space better (Figure 1c) than others (Figure 1d).

Algorithm
A Latin Hypercube Sampling (LHS) algorithm was developed based on concepts of the Maximin Method and tested using Matlab. Through research and analysis, the Maximin Method has proven to be the best and most efficient method,3 as it is a simple and effective design to implement and the linearity of the method results in short run times. Sampling testing was completed as shown in Fig. 2. Each example includes two input factors and both 8 and 100 sampling points.
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	a) 2 factors | 8 sampling points
	b) 2 factors | 100 sampling points

	Figure 2. Results of Latin Hypercube Sampling Fortran algorithm.


Gaussian process data fitting

The use of Gaussian processes (GPs) for regression is a relatively new concept. In 1996, Williams and Rasmussen4 introduced the use of GPs to high dimensional problems that have been traditionally tackled using other modeling techniques such as neural networks and decision trees. GP modeling does not impose a specific model structure on the underlying function,
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, being modeled5. Instead, a Gaussian prior is placed on the range of possible functions that could represent the mapping of input factors 
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 to output responses
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. The Gaussian prior incorporates knowledge about the underlying function in the data where available, and is specified using the GP covariance function. As such, GP modeling is considered to be a non-parametric modeling technique, where the training data are used to discover the model properties in a supervised manner. However, some basic assumptions must be made about
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and these are specified in the GP covariance function.
Overview
Consider an experiment with training data evaluated at n locations each defined by a k-dimensional vector (i.e. k input factors). For training data at the i-th location,
[image: image32.wmf]1

(,...,)

iiik

trtr

xx

=

tr

x

, a given response is denoted by 
[image: image33.wmf]()

ii

tr

yy

=

tr

x

. Consequently, there is a 
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 training data matrix, 
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, is an n-dimensional vector. For any location, the output is modeled as shown in Equation (1)
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The value 
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6. The resulting prediction equation contains one model term for each design point in the original experiment (i.e. training data). Introduced for computer experiments by Sacks, Welch, Mitchell, and Wynn7, this approach is desirable in computer experiments since they provide an exact fit to the training data and require only k+1 parameters.
The covariance function provides a relationship between training data. Although several approaches can be utilized for this correlation structure, the approach used was the squared exponential (SE) covariance function one of the most commonly used covariance functions1 shown in Equation (2)
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Here, 
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 and 
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are hyperparameters that define the properties of the covariance function. The SE covariance function assumes that input points that are close together in the input space correspond to outputs that are more correlated than outputs corresponding to input points which are further apart. For example, if 
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tends towards its minimum, 0. The covariance matrix,
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, includes all training data as shown in Equation (3)
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This equation becomes,
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Consider training data consisting of four (i.e. 
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Assuming hyperparameters of 
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This demonstrates the strong correlation between like values (i.e. training data near one another). Covariances between test and training data points is then defined as shown in Equation (7)

. 
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A column vector of covariances between test and training data points is defined as shown in Equation (8)

.
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Finally, the autocovariance of the test input is defined as shown in Equation (9)

.
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Using the previously defined covariance values, the predicted mean and standard deviation for a given input value are found using Equations (11)

.
(10)

 and 
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Hyperparameter Optimization

Before the output response 
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 for a given input is found, the unknown hyperparameters of the covariance function (i.e. 
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, and a noise variance 
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 assumed to be zero) must be optimized to suit the training data. This is performed via minimization of the log marginal likelihood8 given by
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The log marginal likelihood can be used to choose between different models. This equation is made up of a combination of 
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that determines the success of the model at fitting the output data, a model complexity penalty
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Example case

A Gaussian Process Regression algorithm was developed in Fortran. This algorithm was tested using nominal training data consisting of four (i.e. 
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Using a hyperparameter combination ν = 500 | l = 500, the Fortran algorithm was run from x = 0 to 100. The results, showing training data and Gaussian Process results, are shown in Fig. 3a. 
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	a) ν = 500 and l = 500
	b) ν = 50 and l = 50

	Figure 3. Sample Gaussian Process algorithm results.


Based on minimization of Equation 
(12)

, the hyperparameters were found to be approximately  GOTOBUTTON ZEqnNum742116  \* MERGEFORMAT and 
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. Using these values, and using estimates of standard deviation, the prediction plot is shown in Fig. Fig. 3b. These figures illustrate good agreement between training data and the Fortran algorithm. However, it’s clear that changing hyperparameter values impacts this relationship; the results of Fig. 3b are clearly better than those of Fig. 3a and shows the importance of hyperparameter optimization.
Results and Discussion

The simplified Orion Crew Exploration Vehicle (CEV) thermal model, developed in Thermal Desktop®, consists of an external fluid loop and detailed heat rejection system (i.e. radiators) (Figure 4a). Simulating internal heat development of the crew module is done through a single heat source (i.e. symbol QLOAD). The fluid loop setpoint (i.e. temperature of FLOW.487) is controlled via varying flow around a regenerative heat exchanger. A PID controller (with only a gain component) is used to control the amount of fluid going through the regenerator. Heat dissipation is rejected to a constant temperature environment.

The Orion CEV thermal model consists of several thermal submodels (e.g. radiator submodel) and one fluid submodel (i.e. FLOW). Figure 4b illustrates the thermal model and specifies key FLOW submodel components (e.g. lumps and paths). Details of components within the thermal model are illustrated in Figure 4b. Included are lump and path numbers at key locations within the model.
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	a) Thermal Desktop® Model
	b) Schematic of Thermal Model

	Figure 4. Illustration of Simplified Orion CEV Thermal Desktop® Model.


A thorough analysis of potential system fluids was completed. This was done to help build new fluid property files for use during simulations and help with understanding of obtained results. In order to provide accurate data when modeling each fluid, a mass flow rate (Mdot) was calculated. By using known values of mass flow rates from the 50/50 PGW, Multitherm -58, Galden, and HFE 7000, a common flow capacitance (Mdot*Cp) was calculated and compared. This average value (from Galden, 50/50, and Multitherm) turned out to be approximately 380 at ~20 °C. The flow capacitance from HFE 7000 was calculated. A list of mass flow rates and flow capacitances along with other modeling inputs are shown in Table 1. 

Table 1. Summary of Inputs to Thermal Desktop
	Symbol
	50/50 PGW
	MultiTherm -58
	Dynalene HC-50
	Anhydrous Ammonia
	HFE 7000***
	Galden HT170

	Aheat_HFC (m2)
	0.5
	0.5
	-
	-
	-
	2.0

	total_fluid_volume** (m3)
	0.04717
	-
	-
	-
	-
	-

	Cp @ 20 °C (J/kg-K)
	3395.90
	2590.0
	2701.0
	4745.0
	1288.2
	957.0

	Mdot* (lbm/hr)
	468.0
	610.8
	588.4
	334.9
	1235.0
	1665.0

	Flow Capacitance (Mdot*Cp)
	379.6
	377.8
	379.6
	379.6
	380.0
	380.6

	BMIXGp
	-0.0005
	-0.00025
	-
	-
	-
	-0.00025

	RadTubD
	0.00580 m       (0.2 in)
	-
	-
	-
	0.003175 m     (0.125 in)
	-

	* Mass flow rates are changed in order to maintain the same flow capacitance.

	** Assuming a density of 1060 kg/m3 for 50/50 PGW and 50 kg of fluid.

	*** Temperature at 21.1 °C for HFE 7000.


Based on discussion with NASA personnel, evaluation of the thermal model, and results of a factor screening effort, the following input factors and corresponding ranges were selected for use in subsequent reduced-order modeling efforts (Table 2). Also included are nominal values (i.e. values that were utilized in the supplied thermal model) and justification for selection.

Table 2. Summary of Input Factors

	No.
	Input Factor
	Symbol Name
	Range

(Nominal Value)
	Justification

	1
	Working Fluid
	Not Applicable
	Dynalene HC 50,
Galden HT 170,
HFE 7000
	Discussion with NASA Technical Contacts

	2
	Regenerator Area per Node
	Aheat_HFC
	0.5 to 2.0 m2
	Bounds the range of values used within the thermal model

	3
	Space Temperature
	TEMP_SPACE
	0K to 300K
	Discussion with NASA Technical Contacts (low temperature value)

	4
	Radiator Emissivity
	Opt_Epsilon
	0.7 to 1.0
	---

	5
	Radiator Fin Efficiency
	rad_fin_eff
	0.7 to 1.0
	---

	6
	Tube Inside Diameter
	RadTubD
	0.003175 m (0.125”) to 0.005080 m (0.200”)
	Bounds the range of values used within the thermal model.

	7
	Fin-to-Tube Conductance
	TContact
	50 to 1000

(285)
	Provides a large range around the nominal value. Range is much larger than that used for sensitivity study.

	8
	Regenerator Thermal Mass per Node
	HX_THERMAL_MASS
	500 to 4,000 J/K

(1,450 J/K)
	Provides a large range around the nominal value. Range is much larger than that used for sensitivity study.

	9
	Heatload
	QLOAD
	0 to 4,000 W
	Provides a large range to help identify minimum/maximum heatloads that a system can accommodate.


Based on discussion with NASA personnel and evaluation of the thermal model, the following primary output responses were selected for use in subsequent reduced-order modeling efforts (Table 3).
Table 3. Summary of Primary Output Responses

	No.
	Output

Response
	Symbol

Name
	Description

	1
	Set-point Temperature
	FLOW.487
	Temperature of FLOW.487 at end of simulation. This will be either 1) steady-state temperature or 2) temperature at end of maximum simulation time.

	2
	Fluid Hydraulic Power
	Varies
	Calculated fluid hydraulic power based on 1) lump pressure differential, 2) densities, and 3) flow rate.

	3
	Pressure
	FLOW.365
	Pressure at FLOW.365

	4
	Pressure
	FLOW.2262
	Pressure at FLOW.2262

	5
	Pressure
	FLOW.2272
	Pressure at FLOW.2272

	6
	Flow Rate
	---
	System flow rate

	7
	Average Radiator ∆T
	Varies
	Average ∆T as a result of TContact of 7 radiators


In addition, the impact of QLOAD on a particular system configuration must be understood. This includes: A) the minimum heat load (i.e. QLOAD) to maintain set point (i.e. FLOW.487), B) the maximum heat load to maintain set point, and C) the ratio of these two values is of interest. Consequently, it will be important to include a broad enough QLOAD range to capture the limiting conditions (i.e. A and B from above). A QLOAD range of 0 to 4,000 W was selected based on results on the sensitivity analysis.

Based on prior experience, a good approximation of number of sampling points is 2k, where k is the number of input factors. Further, it was noticed that the regenerator area per node input factor (Aheat_HFC) was a FLOW (i.e. fluid submodel) based variable. Because of this, updates to this variable could not be done under Thermal Desktop’s dynamic mode. As a result, separate runs had to be initiated by a user to ensure that changes to Aheat_HFC were adequately captured. Consequently, this variable was modeled at three distinct levels. At each combination of Aheat_HFC level and fluid type, 28 (i.e. 256) samples were simulated for a total of 768 samples per fluid. LH sampling points were found utilizing JMP® 11 by SAS Institute, Inc. Based on LH sampling and the developed high-resolution thermal model, training data was obtained. This data provided the foundation upon which the RO thermal model was developed.

HFE 7000 Model Test Results

The HFE 7000 RO model predicted temperatures (i.e. set-point and average radiator ∆T) with a maximum residual mean of 0.6 K and standard deviation of 3.7 K. The model predicted fluid hydraulic power with a maximum residual mean of 0.02 W and standard deviation of 0.09 W. Finally it predicted pressures with a maximum residual mean of 0.08 kPa and standard deviation of 0.6 kPa with a maximum percent difference standard deviation of 0.6%. The RO model did not perform well in capturing time to steady-state and percent bypass. Further results can be found in Table 4 and Figure 5 and Figure 6.

Table 4. HFE 7000 CS versus RO Results for Six Output Responses (768 LH Sample Points)
	 
	Set-point
	Fluid
	Pressure
	Pressure
	Pressure
	Average
	Time to
	Percent

	
	Temperature
	Hydraulic
	(FLOW.365)
	(FLOW.2262)
	(FLOW.2272)
	Radiator
	Steady
	Bypass

	
	
	Power
	
	
	
	∆T
	State
	

	 
	[K]
	[W]
	[Pa]
	[Pa]
	[Pa]
	[K]
	[s]
	[%]

	Max RO
	303.0
	2.00
	114,578
	113,828
	106,513
	4.8
	4,280
	122.8

	Min RO
	220.8
	0.08
	111,066
	110,238
	102,812
	0.3
	686
	-23.0

	Max CS
	306.1
	2.09
	114,441
	113,659
	106,325
	4.8
	3,600
	99.9

	Min CS
	224.6
	0.14
	111,414
	110,635
	103,337
	0.1
	760
	0.3

	Residuals (RO-CS)

	Max
	9.5
	0.28
	1,700
	1,609
	1,466
	0.5
	1,743
	92.9

	Min
	-10.0
	-0.36
	-2,825
	-2,833
	-2,961
	-0.3
	-2,206
	-59.1

	Mean
	0.6
	0.02
	81
	80
	76
	0.0
	-26
	1.8

	Std Dev
	3.7
	0.09
	597
	586
	578
	0.1
	645
	13.5

	% Difference

	Max
	3.6
	30.2
	1.5
	1.5
	1.4
	425.5
	200.1
	35,527.2

	Min
	-3.6
	-41.8
	-2.5
	-2.5
	-2.8
	-17.5
	-61.5
	-8,545.0

	Mean
	0.2
	1.7
	0.1
	0.1
	0.1
	9.6
	9.4
	470.0

	Std Dev
	1.4
	10.4
	0.5
	0.5
	0.6
	49.6
	44.1
	3,536.0
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	Figure 5. HFE 7000 RO versus CS Plots for Two Output Responses: Set-point Temperature and Fluid Hydraulic Power (768 LH Sample Points).
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	Figure 6. HFE 7000 RO versus CS Plots for Two Output Responses: Pressure (FLOW.2272) and Average Radiator ∆T (768 LH Sample Points).


Factor Sweeps

To further assist in evaluating the accuracy of the models, factor sweeps were carried out for Galden HT 170. For each factor sweep all factors were set at nominal values (Table 5) while one factor was varied over its entire range. This was done for QLOAD.

Table 5. Summary of Nominal Parameter Values for Factor Sweeps

	Aheat_HFC
	TEMP_SPACE
	Opt_Epsilon
	rad_fin_eff
	RadTubD
	TContact
	HX_THERMAL_MASS
	QLOAD

	[m^2]
	[K]
	[---]
	[---]
	[m]
	[---]
	[J/K]
	[W]

	1.25
	150
	0.85
	0.85
	0.004128
	525
	2250
	2000


For each factor sweep, an output response was calculated using the RO model and CS simulated results. The comparisons are shown in Figure 7.
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	Figure 7. Galden HT 170 Set-point Temperature and Fluid Hydraulic Power CS Response and RO Prediction versus QLOAD Input Factor.


These figures illustrate that the RO model provides a useful surrogate for smooth functions. However, it was found that discontinuities (e.g. Time to Steady State output response) challenges the RO predictions.
Increased Samples

The number of samples for the Galden HT 170 RO model was double from 768 to 1536 to determine the impact to the RO model performance. By increasing the number of samples, the Galden HT 170 RO model set-point temperature prediction improved from a maximum residual mean of 0.3 K and standard deviation of 5.0 K to 0.2 K and 3.8 K, respectively. A plot of RO versus CS results for both sample sizes is shown in Figure 8.
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	a) 768 Samples
	b) 1536 Samples

	Figure 8. Galden HT 170 RO versus CS Plots for Set-point Temperature Output Response (768 and 1536 LH Sample Points).


Conclusions
The NASA CEV RO models for Dynalene HC 50, HFE RT 170, and HFE 7000 provide a useful surrogate to more computationally expensive computer simulations. Several observations were made:

· The RO models did a good job replicating temperature output responses. Across the three fluids, the RO models predicted temperatures (i.e. set-point and average radiator ∆T) with a maximum residual mean of 1.6 K and standard deviation of 5.0 K.

· The RO models did a good job replicating the hydraulic power output response. Across the three fluids, the RO models provided predictions with a maximum residual mean of 0.2 W and standard deviation of 1.93 W.

· The RO models did a good job replicating pressure output responses. Across the three fluids, the RO models predicted pressure (i.e. FLOW.365, FLOW.2262, and FLOW.2272) with a maximum residual mean of 1.6 kPa and standard deviation of 18.2 kPa with a maximum percent difference standard deviation of 7.3%.

· The RO models did a poor job of replicating output responses with discontinuities. This includes time to steady-state and percent bypass.

Although increasing sample size did improve performance of the RO model (i.e. set-point temperature), the improvement was small. RO model set-point temperature predictions improved from a maximum residual mean of 0.3 K and standard deviation of 5.0 K to 0.2 K and 3.8 K, respectively. This indicated that the 2k sample size was an appropriate balance of precision/accuracy and computational expense.
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