Cryogenic Multi-layered Insulation Seam Studies and Experiments

Justin P. Elchert
Wesley L. Johnson
NASA Glenn Research Center

Presented by
Justin P. Elchert
• Introduction
• Calorimeter overview
• Calorimeter photos
• Test results
• Thermal model discussion
Seams

Skirt Integration

Penetration Integration
- Fill line
- Drain line

MLI Blanket Type
- Traditional
- SS-MLI
- Hybrid

Pins & Attachments

Repeatability

Lockheed Concept - 1969
Calorimeter Overview

- Vacuum tank
- Copper auxiliary wall
- Test section
Calorimeter

Copper

Black paint AZ-306

Water/glycol cooled jacket
Calorimeter

G-10 support

insulation
Desire to model staggered over lap and butt seams
Typical Solution for MLI Heat Load

- There are multiple 1-D MLI solution methods
 - Direct (a.k.a. “Layer by Layer”)
 - Semi-Empirical (“Lockheed”, “Modified Lockheed”, “Cunnington”)
 - Polynomial fits

- These solutions assume blankets are “ideal” and from laboratory calorimeter data
 - Historical tank data off by factor of 2 – 10

- Cannot use these methods to predict heat load from a seamed blanket
Comparison to predictions and test data

Table

<table>
<thead>
<tr>
<th>Test</th>
<th>Configuration</th>
<th># of layers</th>
<th>layer density</th>
<th>Q_{flux}</th>
<th>Q_{seam}</th>
<th>Q_{pred}</th>
<th>DF</th>
<th>dDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overlap</td>
<td>50</td>
<td>17.4</td>
<td>0.564</td>
<td>0.044</td>
<td>0.116</td>
<td>4.9</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>Interleave</td>
<td>50</td>
<td>17.1</td>
<td>0.536</td>
<td>0</td>
<td>0.116</td>
<td>4.6</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Butt</td>
<td>50</td>
<td>18</td>
<td>0.576</td>
<td>0.061</td>
<td>0.116</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>Butt - 1 stagger, 2 in</td>
<td>50</td>
<td>19</td>
<td>0.577</td>
<td>0.062</td>
<td>0.116</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>Butt - 1 stagger, 4 in</td>
<td>50</td>
<td>17.9</td>
<td>0.580</td>
<td>0.06</td>
<td>0.116</td>
<td>5</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>Interleave</td>
<td>20</td>
<td>16.6</td>
<td>0.727</td>
<td>0</td>
<td>0.28</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Overlap</td>
<td>20</td>
<td>16.6</td>
<td>0.729</td>
<td>0.003</td>
<td>0.28</td>
<td>2.6</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>Butt - 1 stagger, 2 in</td>
<td>20</td>
<td>18</td>
<td>0.861</td>
<td>0.204</td>
<td>0.28</td>
<td>3.1</td>
<td>0.48</td>
</tr>
<tr>
<td>9</td>
<td>Butt - 0 stagger</td>
<td>20</td>
<td>18</td>
<td>0.823</td>
<td>0.146</td>
<td>0.28</td>
<td>2.9</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Q_{\text{pred}} using “Layer by Layer” method
Thermal Desktop model assumptions

- Steady state
- Water cooled jacket approximated with isothermal boundary node and conductor
- Cryocoolers approximated as isothermal boundary nodes at the test condition
- Temperature dependent properties (including emissivity)
- Diffuse radiation
- Optically thick layers
Thermal Desktop Model

100,000 rays
Bij cutoff = 0

aluminum 6061 rod
Cold guard
Test section
Q = 0.30 W

\(Q_{\text{flux}} = 0.216 \, \text{W/m}^2 \)
Staggered, two inch spacing, actual gap

\[Q = 0.37 \text{ W} \]
\[Q_{\text{flux}} = 0.27 \text{ W/m}^2 \]
\[Q_{\text{seam}} = 0.06 \text{ W/m} \]

2.3 times lower than measurement
Conclusions and Forward Work

- TD can be used to model MLI in detail, including seams, to within a factor of ten of the true answer.
- When correlated / validated, the model will be used to tabulate a set of results useful for first order estimates at the system level.
Acknowledgements

- This work was funded by the Space Technology Mission Directorate’s Evolvable Cryogenics Technology Demonstration Mission under the Improved Fundamental Understanding of Multi-Layer Insulation task.
- Dr. David Chato, NASA GRC (ret)
- Dr. Ebiana, Cleveland State State University
Questions
References