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Introduction

This lesson provides an introduction to On-Orbit
Thermal Environments for those unfamiliar with this
subject and will also serve as a refresher for
practitioners of thermal analysis.



Overview of Natural Thermal Environments

Main focus will be on naturally occurring heating
sources driven by solar heating, reflected solar
heating and infrared sources;

Some focus will be given to free molecular heating;

Charged particle heating will be briefly discussed.



Scope of this Lesson

Radiation heat transfer;
Basic orbit mechanics;

Derivation of the solar, albedo and planetary
infrared heating components;

Beta angle and eclipse effects;

An example problem will be presented.



Scope of this Lesson

Free molecular heating;

Charged particle heating.
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Thermal Radiation Basics



Thermal Radiation Basics

Unlike conduction and convection, thermal radiation
is a highly non-linear phenomenon and is
proportional to the fourth power of an object's
absolute temperature.

Conduction and Convection Q < AT

Radiation Q o< A(T#)




The Rayleigh-Jeans Law and the Ultraviolet
Catastrophe (Ref. 1)

Classical theory used the Rayleigh-Jeans law to
predict spectral distribution:

u(l) = 8wkTA™*

where u(A) is the spectral radiance, A is the
wavelength, k is the Boltzmann constant, and T is
temperature.

For large A, there was good agreement with
experiment but as A approached zero, u(A)
approached infinity -- the "ultraviolet catastrophe."”



Blackbody Radiation and Planck's Law (Ref. 1)

By assuming that electromagnetic radiation is
guantized, Max Planck showed that for a blackbody

at a temperature, T:
8mhcA™>

hC/ART —1

u(d) =
e
where u(A) is the spectral radiance, A is the
wavelength, h is Planck's constant, c is the speed of
light, and k is the Boltzmann constant.

This is known as Planck's Law.



Blackbody Radiation and Planck's Law (Ref. 1)

The total energy density is given by:

00 © 8rhcl™>
U :f w()d2 :f dz
0

hC/
0 ¢ AKT 1

Let x = h¢/AkT. The integral becomes:

o j“ﬂn:hc}l‘a (kT)d o (kT)"’jm x3 ;
B eX—1 \hc x_ﬂ:chr: ﬂef"f—lx

0



Blackbody Radiation and Planck's Law (Ref. 1)

We see that:

U = 8rh kTYF Iy
B Hc(hc o e*—1 *

and observe the quantity in the integral is
dimensionless;

We conclude that the spectral radiance is
proportional to T# - the Stefan-Boltzmann Law.



Spectral Irradiance (W/m?2/nm)
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The Solar and Infrared Spectra (Ref. 3)

2.0
€ >98% of Solar Spectrum Energy —>

>98% of the solar ; |

spectrum energy lies : |
below 4000 nm; |

For a blackbody at 300K, . —— |
>99% of its energy lies
above 4000 nm;

T
:(— >99% of Infrared Energy =

(W/m2/nm)

Think of these two regions
as the solar and infrared
spectra, respectively.

Spectral Irradiance
w
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The Blackbody

A blackbody is the perfect absorber and emitter of
radiant energy;

The Stefan-Boltzmann law shows that energy
radiated from a blackbody is a function only of its
absolute temperature, T:

B 2w kA
~ 15h3¢2
where 6 =5.67 x 108 W/m?2 K4,

g=oT* o



The Grey Body

Most objects are not perfect blackbody absorbers or
emitters -- they are said to be "grey";

To account for imperfect absorption and emission,
the Stefan-Boltzmann equation is scaled by an
emissivity term, g;

g = eoT*

¢ is a value between 0 and unity.



Solar Absorptance and Infrared Emittance

In the spacecraft thermal lexicon, we differentiate
between how well a surface absorbs solar spectrum
energy and how well it absorbs and emits infrared

energy:

o refers to solar absorptance;
¢ refers to infrared emittance;

But for a given wavelength, )., the absorptance is
equivalent to the emittance:

a, =&,



Conservation of Energy

Conservation of energy tells us that the energy
absorbed by a surface, o, plus the energy reflected,
P, plus the energy transmitted, T, must equal the
energy incident on that surface:

a,+p,+t7, =1

For an opaque surface, T, = 0 and the equation
simplifies to:

a,+p;, =1

This will be important when we calculate albedo flux.



Solar Absorptance and Infrared Emittance

When we differentiate between the solar and
infrared spectra, we drop the A subscript and it is
understood that:

o, applies to the 0-4000 nm range;

p applies, roughly, to the 0-4000 nm range;

¢ applies to the 4000 nm and above range.



Orbits



Anatomy of an Orbit

Periapsis -- the location
of minimum orbit
altitude

Argument of Periapsis --
the angle, measured in
the orbit plane, from
the ascending node to
the periapsis

Semimajor Axis-- half
the distance from
apoapsis to periapsis

uuuuuu

True Anomaly -- angle
from the periapsis
location to the

spacecraft location

Inclination -- the tilt of
the orbit plane with
respect to the equator

KScending Node -- the location
where the orbit crosses the
equator headed south to north

Apoapsis -- the loca
of maximum orbit
altitude

Right Ascension of the Ascending Node
will be discussed in a subsequent section.
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Orbit Eccentricity

The eccentricity, e, of an
ellipse is defined as:

e — —
a

where a is the length of the
semimajor axis and f is the
distance from the center to
one of the foci.

For a circle, e = 0.

22



Orbit Eccentricity

Three orbits with the
same semimajor axis are
shown here;

The only difference is the
orbit eccentricity:

e = 0.0 (circular)
e=04
e=0.38
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Circular Orbits

Circular orbits are easier to describe because they
are a degenerate case of the ellipse;

For a circular orbit, the semimajor and semiminor
axes are equal in length and, because of this, the
argument of periapsis is undefined;

Hence, the shape and orientation of a circular orbit
may be described by its radius, inclination and right
ascension of the ascending node, only.



Solar Flux



Solar Flux

At a distance of 1 a.u,,
the intensity of the
incoming solar flux is
1367 W/m? (Ref. 4);

We seek an expression
that allows us to
calculate the intensity of

the solar flux at any _
] The Sun as seen by the Solar Dynamics
distance. Observatory on 04 May 2011

SDO/AIA 304 2011-05-04 13:43:33 UT

NASA Photo
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Solar System Geometry

Earth's orbit around
the sun is slightly

elliptical (e = 0.0167); \ \
Earth closer to the sun A ‘N .
T VA 'p —@®
\,\' 7

)

during part of the year;
\

Y
Earth's average 28

distance from the sun,
a, is one half of the
ellipse's major axis.



Solar System Geometry

Earth's closest approach
to the sunis called

perihelion (r,); /L
Earth's most distant s A\ 1
)

point from the sun is R

called aphelion (r,); ‘ v
23

Earth's angular position
from perihelion is called
true anomaly (v).



Solar System Geometry

Earth's distance from the
sun may be determined

for any value of true Ly

anomaly, v by using the \

formula: A v |
= " "
\ J

|

~

a(l —e?) |
1 + ecos(v) 2'a

r(v) =
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Solar System Geometry

Perihelion, then, is determined

as: .
r(0) = al — ) =a(l —e) /—\/
"~ 1+ecos(0) “\

And, similarly, aphelion is: T Ta ot
2 ‘\ /I
() a(l —e*) . z'
run) = =a(l+e a
1 + ecos(m) ( )

For Earth, a =1 a.u.
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Calculating Solar Flux

The sun broadcasts its
energy in all directions;

If we construct imaginary
spherical surfaces about
the sun, we know that
the total energy crossing
each surface must be the
same.




Calculating Solar Flux

We can set up an energy
balance as follows:

0
 41(1)?2

(QSDI)T:]_

-

But since the same
amount of energy must
cross each sphere:

Q — (QSOI)T:14H12 — (('?SOI)TP‘q-RTPZ

— ((’?SOI)TA 4—???’:3

32



Calculating Solar Flux

The flux at Earth
perihelion and aphelion is,
respectively:

(q ) _ ((‘?SOI)T’ZI _ ((’?SOI)T’ZI
sol/rp sz (1 . 8)2

. ((?sol)rzl o (QSOI)TZI

((‘?SOI)TA — TAZ — (1 T 8)2

33



Calculating Solar Flux

Fora=1a.u., e=0.0167 and a solar flux of 1367
W/m? at 1 a.u., the following values are obtained:

((’?SOI)TP = 1414 W/m?
((’?SGI)?’A 1322 W/mz

These typically have a £5 W/m? accuracy.

Note: A value of 1423 W/m? is a typical hot case

solar flux design parameter and depends on the
mean value of solar constant assumed.



Calculating Solar Flux

Using this same
formulation, we can
calculate the solar flux at
any distance, r, from the
sun:

((‘?SOI)T=1
T2

(‘?SOI (T) —

For the remainder of this
lesson, solar flux will be
referred to as, simply (so; .



Albedo Flux



Albedo Heating

Albedo heating is solar
energy reflected from
the planet and its
atmosphere;

It iIs not a point source --
it subtends a solid angle
and has non-uniform
area intensity.

Partially llluminated Earth as
Seen from Apollo 12
(NASA Photo)



A Simplified Albedo Model

Analysis of albedo is complicated by its non-
uniform area intensity;

We can, however, gain an understanding of the
contribution of albedo heating by making some

simplifying assumptions;

Corrections to this will be discussed.



Assumptions for the Simplified Albedo Model
Simplifying assumptions:

Low altitude, circular orbit --
restricts planet viewing to
local regions with similar
illumination conditions;

Constant albedo factor
planet-wide -- uniform albedo
factor, with diffuse reflection,
is the easiest to model.
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Simplified Albedo Flux Calculation

The expression for the simplified albedo flux is
formed by considering the following:

intensity of the sunlight striking the planet, g, ;

fraction of sunlight reflected, p (i.e., the albedo
factor is just 1 - a);

scaling of intensity from orbit noon (i.e., solar zenith
angle, &);

local form factor to the planet, FF.



/ Aside: Solar Zenith Angle, & \

The solar zenith angle, ¢, is
a measure of angular
distance from orbit noon;

If orbit angle, 0 is measured
from orbit noon and 3" is
measured from a plane
containing the sun, an
increase in either

parameter results in an
increase in C.
* B will be discussed in detail later on




/ Aside: Solar Zenith Angle, & \

Mathematically, ¢ is
expressed as:

cosé = cosfcospf

for:

—90° < § < +90°
—90° < B < 490°

We'll explore 3 in detail
\na subsequent section. /




/ Aside: The Form Factor \

A form factor
describes how
well one object

can "see"
another object; "o 'ﬁ

The form factor

may take on a 1 cos 6, cos @
y FFIZ — 1 2 dAldAz
value from zero Ay nrs

Qu nity. /




Aside: Form Factor

The Nusselt Sphere
technique is one of many
ways to calculate form
factors;

Surface 2

The form factor from dA, to
Surface 2 is calculated as the
projected area, A,, divided
by the area of the
hemisphere's circular base.




Aside: Form Factor

Let's use the Nusselt Sphere
technique for calculating the
form factor to the planet
from an orbiting plate, at
altitude h above the planet,
whose surface normal faces
the nadir direction.

Planet




/7

noting:

\ sing =

We see that we can
construct a right triangle (in
green) with a short side
measuring r, and a
hypotenuse measuring r +h;

We define the angle ¢ by

Aside: Form Factor

TE;‘
.+ h




/ Aside: Form Factor

Similarly, we can construct a
right triangle (in red) with a
hypotenuse measuring unity

and the angle ¢, already
defined;

We define the distance x by
noting:

Te

| X
sing =—=—=x =
? r

\ 1 r, + h




/ Aside: Form Factor

Projecting x down to the base,
we see that the ratio of the
projected circular area to the
total area of the base is:

FF—HXZ—( T, )2
w12 \r,+nh

We'll come back to this result
in our heating calculations.

-




/ Aside: Form Factor \

The forward (east)-, aft (west)-, north- and south-

facing surfaces have a different view to the planet
due to their orientation.

For these "perpendicular"” surfaces, the form factor

is presented in Ref. 5 and shown here, without
derivation.

o[-
)




Simplified Albedo Flux Calculation

The equation for a nadir-facing plate is:

Te  \?

(qalb(g))nadir — QSOIP( ) COS f
h

Intensity of sunlight / T +

Scaling of
o s intensity from
striking the planet Fraction of the \ Local Form

orbit noon
sunlight reflected Factor to the
planet
. \
Usol :'3**‘
> —
{ffl_‘.'l'.
For:

—90° < & < +90°
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Solar Zenith Angle Corrections
to Albedo (Ref. 6)

Our simplified model isn't perfect but there's a way
to correct for albedo by applying this formula:

p(&) = pe=o + Cal* + C38° + €87 + (1€

C, = +4.9115x 107°
C; = +6.0372x 1078
C, = —2.1793x 107>
C; = +1.3798 x 1073

Note that this correction was derived from data
restricted to latitudes of +30° to -30°.



Albedo Correction Term, p (&)

.35

.30

.25

.20 ¢

.15

.10

.05

.00

Solar Zenith Angle Corrections

to Albedo (Ref. 6)
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Albedo Flux (W/m?)

Solar Zenith Angle Corrections to Albedo

450 ‘ ‘ ‘

> Corrected Model

400 | \\\\
: \\

350 | >\‘
| simplified Model 1 \s

300 - \\
250 \\\
200 | ™
] Assumptions: \
150 - P =0.3 N
| A, = 1367 W/m? \\

; A\

| Note: Raw flux value with no form factor correction.
4 Y S A S S
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Solar Zenith Angle, § (°)



Planetary Infrared Flux



Planetary Infrared Heating

Thus far, we've discussed natural heating
components using illumination in the solar
spectrum;

But there is another heating source incident on a
spacecraft when in proximity to a planet/moon;

And the heating is concentrated in the infrared
portion of the spectrum -- it's called planetary
infrared or outgoing long-wave radiation (OLR);



Simplifying Assumptions for Earth Infrared

We can learn much by examining a simplified
representation of Earth's heat balance;

For this analysis, we'll assume that Earth's
atmosphere and relatively rapid rotation with
respect to the sun results in uniform temperatures
over the entire globe; Earth is at thermal radiation
equilibrium; and, Earth's albedo is constant over the
entire surface.



The Overall Planetary Heat Balance

The overall planetary heat balance assumes steady
state heat transfer -- the amount of heat absorbed
by the planet must equal the amount radiated:

Qin — Qout

Let's take a closer look at each of these terms.



The Overall Planetary Heat Balance

The heat absorbed is the amount of incoming solar
flux times the area that intercepts the flux times the
fraction absorbed:

Qin — (‘?SOIA}:JTO}'(I IR p)

But what is meant by the projected area (Apmj)



/ Aside: Projected Area \

The entire planetary sphere is not
illuminated;

Only half is illuminated at any given
instant and even that illumination
is not uniform;

But it's easy to visualize how much

sunlight is intercepted by the Earth as Seen
from Apollo 8

planet, even with this non-uniform
: ] . (NASA Photo)
illumination.




Aside: Projected Area

Imagine that you could lower a white screen behind
an illuminated planet and observe from afar;

How much sunlight would be missing?

Incoming Solar Heating

V V V V

(Assumed Parallel)

60




/ Aside: Projected Area \

Looking at the screen head-on, we see that a circle
of sunlight is missing;

The projected area of a sphere is simply that of a

circle. &

_ 2
Ap'roj — }'I?"e

\_ r

61




The Overall Planetary Heat Balance

The heat emitted is assumed uniform over the
entire planet;

We can express the heat rejected using the familiar
Stefan-Boltzmann law:

y 2 4
Q,ut = 4nrS,eoT

where 4712 is recognized as the surface area of the
planetary sphere.



The Overall Planetary Heat Balance

Next, we equate the outgoing and incoming energy,
and substituting for the projected area:

(‘?SGIApTO}'(l — p) — 4HT82 eoT*

Solving for the planetary temperature, T yields:

* (?501(1 T p)
4deo




The Overall Planetary Heat Balance

We can also find the flux emitted by the planet at
temperature, T:

. . q$01(1 o p)
Qpla — 4

For a mean solar flux of 1367 W/m?, albedo of 0.3
and an assumed Earth emittance of 1.0:

T = 255K
('?pla = 239 W/m2



The Overall Planetary Heat Balance

The flux incident on the spacecraft is scaled by the
local form factor to the planet for a nadir-facing
plate:

(. ) . q$01(1 o P) ( Te )2
pla nadir 4 T, + h
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Why Won't This Calculation Work for the
Moon?

Recall our simplifying
assumptions:

Earth has an atmosphere
to transport heat over the
globe -- the Moon does
not;

respect to the sun when from Apollo 11
(NASA Photo)
compared to the Moon.
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Why Won't This Calculation Work for the
Moon?

Because of this, assuming the Moon is isothermal
is not a good assumption.

Moon as Seen from Apollo 11 as it
was Homeward Bound
(NASA Photo)



Albedo and Planetary Flux
Combinations



Combination of Natural Environmental
Parameters

The previous developments were used to show
how reasonable estimates of natural

environmental parameters could be obtained
using some simplifying assumptions;

Now, it's time to explore "reality".



Local Variation vs. the Planet-Wide Heat
Balance

Our earlier derivation for planetary OLR assumed
a planet-wide heat balance;

This isn't necessarily true for local conditions;
Seasonal variation in vegetation, snow cover,
cloud cover, etc., can all affect local albedo and

OLR components.

So how do engineers account for this?



Local Variation vs. the Planet-Wide Heat
Balance (Ref. 7)

EARTH'S ENERGY BUDGET

Reflected by Reflected Reflected from
atmosphere by clouds earth's surface

6% 20% 4% 64% 6%

Incoming Radiated to space
solar energy from cI(':-]uds and
100% atm osphere

Absorbed by
atmosphere 16%

~ Absorbed by
clouds 3%

Conduction and .4
rising air 7%

Radiated
direct ly

to space
from earth

Radiation
absorbed by
atmosphere
15%

Absorbed by land
and oceans 51%
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Earth Radiation Budget Experiment (ERBE)

The Earth Radiation Budget
Experiment (ERBE) used a
new generation of
instrumentation to make
accurate regional and
global measurements of
the components of the
radiation budget. (Ref. 8)

Earth Radiation Budget
Satellite (ERBS)



Albedo

Albedo

Albedo and Planetary OLR Data (Ref. 9)
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Albedo

o o o o o o o o o o o

Albedo vs.Planetary OLR (Ref. 9)

High Inclination Orbits, 128 Second Averaged Data
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.50
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0 150 200 250 300 350
Outgoing Long Wave Radiation (OLR), W/m?



/ Aside: Time Constant \

As the thermal environment changes, so does an
object's temperature;

Objects with low thermal inertia react faster than
objects with a higher thermal inertia;

Objects with high heat transfer to or from the
environment will react more rapidly than those
with lower heat transfer.

\_ /




/ Aside: Time Constant \

The effect of thermal inertia and heat transfer into
and out of an object may be understood through
investigation of the time constant, 7.

Mathematically, for a mass, m, the time constant,
T is given by:

me

=3¢

where C, is the specific heat and G is conductance
Qa linearized conductance. /

T




/ Aside: Time Constant \

Real-life problems require more than a single set of
environmental parameters:

Objects with short time constants react to short-
term changes in the thermal environment --
examples: components such as radiators and
insulation surfaces;

Objects with longer time constants react more

slowly to changes -- examples: massive components
wch small area and insulated structure. /




Albedo vs. OLR (Ref. 9)

Engineering Extreme Cases for High Inclination Orbits

COLD CASES

Averaging Time

Minimum Albedo

Alb < OLR (W/m?)

Combined Minimum

Alb — OLR (W/m?)

Minimum OLR
Alb — OLR (W/m?)

16 second 006 < 273 016 < 212 040 < 97
128 second 0.06 < 273 016 < 212 0.38 < 102
896 second 009 < 264 017 < 218 033 < 141
30 minute 0.13 < 246 0.18 < 218 031 < 171
90 minute 016 < 231 019 < 218 0.26 < 193

6 hour 0.18 < 231 020 < 224 027 < 202

24 hour 0.18 < 231 020 < 224 024 < 205

HOT CASES
Averaging Time | Maximum Albedo | Combined Maximum | Maximum OLR

Alb — OLR (W/m?

Alb — OLR (W/m?

Alb — OLR (W/m?

16 second 050 < 180 0.32 & 263 0.22 < 350
128 second 049 < 184 031 & 262 022 & 347
896 second 035 & 202 0.28 < 259 020 & 304
30 minute 033 & 204 0.27 < 260 020 & 280
90 minute 028 < 214 0.26 & 244 022 & 231
6 hour 027 < 218 024 < 233 022 < 221
24 hour 024 & 224 023 < 232 020 & 217

Mean Albedo: 0.21

Mean OLR: 211




Albedo and OLR Combinations (Ref. 10)

Orbit Time*

D 1

Condition? 0to 0.25 hr 0.25t0 0.4 hr After 0.4 hr
Albedo OLR Albedo | OLR | Albedo | OLR
(W/m?) (W/m?) (W/m?)
Cold A (3) 207 (3) 177 0.27 217
B (3) 207 (3) 177 0.22 241
Mean 0.27 241
Hot A (5) 0.21 287 0.20 307 0.27 273
B 0.36 241 0.40 241 0.35 241
Solar Constants (W/m?)
Cold 1321
Mean 1371
Hot 1423
Notes:
1. Values i this table are expected to be exceeded no more than 0.5% of

the time. Albedo and OLR are adjusted to the top of the atmosphere
(30 km altitude).
Both Set A and Set B are design requirements.
No Albedo value. extreme cold case occurs 1n eclipse.
Referenced to orbit location per Figures 7-A and 7-B.
Line A as noted on this Table was developed from the
Probability Table as specified in SSP 50094, section 13.
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Albedo and OLR Combinations (Ref. 10)

0O orr
B Albedo Condition Set A
. . O OLR Condition Set B
< Initialization ——* ® Albedo
350 R |
] Always o B -
— 025 | Always 0.15 Hours -
300

250
5
Z 200 40
o
= p
)
150 + 3
o -
] 21 | ] 2
7] 7] 2
I N I N EEEEE————————.— L 10 =
100 7 I 20 — =
_ | ]
- | -
N R [ L
50 -] | —Always 0.325 Hours —
_ L/ _
0o ] ' 1 o
1ss Start Solar End
Orbit Noon Orbit

Timeline

Design Hot Case Thermal Environment Profile



Albedo and OLR Combinations (Ref. 10)

OLR (W/m2)

100

o OLR Condition Set A
O Albedo “ondition Set
e O OLR o
Initialization 6 Albedo Condition Set B
A QLR
| OLR (B)
/ Always 0.15 Hours —
a i
————————————————————— 30
| . Albedo (A) _

\ " :[ . Albedo (B)
-+ttt - 20
- Always —

_ 0.025 _]
—_—— i — — e —— — — — ] — HD]J.L‘.- _______________ - 10
tss Start Sunrise End
Orbit Orbit
Timeline

Design Cold Case Thermal Environment Profile

Albedo (%)



Beta Angle



The Beta Angle

The beta angle, 3 is the angle between the solar
vector, s, and its projection onto the orbit plane;

We're going to calculate the beta angle but before
we do, we need to explain some concepts.



Aside: The Celestial Inertial Coordinate
System

A simplified representation of Earth's orbit about
the sun is shown below:

-------------------- 2 S,
P Vernal ; \ Perihelion
Equinox s (~anuary 4
Summer - q ‘\( y4)
Solstice »
63 sur €3
Y /' Winter
Aphelion Solstice
(~July 4)

-
-~
-
~——

Autumnal
Equinox




Aside: The Celestial Inertial Coordinate
System

The celestial inertial coordinate system is convenient

for performing on-orbit thermal environment
calculations.

(Vernal Equinox)
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The Solar Vector

We define the solar vector, s, as a unit vector in the
celestial inertial coordinate system that points
toward the sun.

North

(Vernal Equinox)
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The Solar Vector

The apparent motion of the sun is constrained to
the Ecliptic Plane and is governed by two

parameters: I and e.
North

(Vernal Equinox)
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The Solar Vector

g is the Obliquity of the
Ecliptic and, for Earth, is
presently 23.45°; :

I' is the Ecliptic True
Solar Longitude and
changes with date -- I is
0° when the sun it at the y
Vernal Equinox. ="




The Solar Vector

We can form the solar vector via two Euler angle
transformations: first a rotation of the unit vector of
¢ about the x-axis and then a rotation of I about the
new z-axis.

~ <o _—m——-—

Unit Vector, First Rotation, Second Rotation,
No Rotation € about x-axis I" about new z-axis



The Solar Vector

Mathematically, the transformation is expressed as:

cosI' —sin' 0](1 cos [’
sin' cosI” 0|30 =14sinI cos ¢

0 0 110 sinl'sine

1 0 0
S=|0 cose —sine
0 sine Ccos £

(Vernal Equinox)

90



The Orbit Normal Vector

In the same celestial inertial coordinate system, we
define the vector, o, as a unit vector pointing normal

to the orbit plane.
North

o,
T lo/ /.6/}
z ’ -7 o \\e’)e

_________

:::::::

’
/7
’
</
’
’
7
’
-7

,// (Vernal Equinox)
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The Orbit Normal Vector

i is the Orbit Inclination --
a measure of angular tilt
from the equatorial plane;

Q2 is the Right Ascension of
the Ascending Node -- a |
measure of angle between
the x-axis at the point " Nernalquinon
where the orbit cross the

equatorial plane going

from south to north.




The Orbit Normal Vector

We can form the orbit normal vector via two Euler
angle transformations: first a rotation of the unit
vector of (2 about the z-axis and then a rotation of i
about the new x-axis.

Unit Vector, First Rotation, Second Rotation,
No Rotation Q) about z-axis i about new x-axis



The Orbit Normal Vector

Mathematically, the transformation is expressed as:

o=

cos() —sin() O0]]1 0 0 0 sin () sini
sin () cos() O0||0 cosi —sini|i0;=41—cos(sini

0 0 11L0 sini COS 1 1 Cos L

""" (Vernal Equinox)
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Calculating the Beta Angle

To most easily calculate the
angle between a vector and a
plane, it is necessary to
determine the angle
between the vector and a
vector normal to the plane,
denoted here by ¢;

We note that B = ¢ - (t/2)
radians.



Calculating the Beta Angle

The beta angle, then, is given by:

sinQsini ! cosT
CoOS¢p =08 ={—cosQsini; {sinlcose
COS i sinl'sin €

cos @ = cosI'sin()sini —sinI cosecos{)sini
+sinl'singcost

But, since 3 = ¢ - (n/2) radians:

f =sin"(cosTsinQsini — sinT cos € cos Qsin i
+ sinT sin € cos i)



Calculating the Beta Angle

We see that [ is limited by:

B = x(e+ i)

Beta angles where the sun is north of the orbit
plane are considered positive -- beta angles where
the sun is south of the orbit are considered
negative.



Consequences of Beta Angle
Variation



Variation of the Beta Angle

Our expression for [3, repeated here for convenience

IS:
B =sin"(cosT'sinQsini — sinT cos € cos Qsin i
+ sinT' sin € cos i)

The beta angle is not static and varies constantly;
Two factors that affect (3 variation the most:
1. The change of seasons (variation in I');

2. Perturbation of the orbit due to the oblateness of
the planet (variation in Q).



Variation Due to the Change of Seasons

It takes the sun just over
one year to make one
circuit around the celestial 2
sphere;

We measure the sun's
progress by I;

(Vernal Equinox)

Strictly speaking, the rate
that the sun makes this
circuit is not constant.



Variation Due to the Change of Seasons

Since Earth's orbit about
the sun is nearly circular,
an approximation of the z
variation of I" with time is
sufficient.

360°  0.986°
" 365.25days  day

)



Variation Due to Precession of the Orbit

Earth is not a perfect sphere;

Equatorial bulge produces a
torque on the orbit;

Effect is a precession of the _,

orbit ascending node;
e (Vernal Equinox)

Precession is a function of

orbit altitude and inclination.



Variation Due to Precession of the Orbit

This variation is called the

Ascending Node Angular Rate, Q,
and is given by:

: 3 [Teg\? [H
A=—= (—q) /—cosi
where J, is the oblateness
perturbation, r, is the planet " et zutnen)
equatorial radius, p is the
"parameter”, u is the planet mass

x @G, ris the orbit radius and i is
inclination.




Variation Due to Precession of the Orbit

For Earth, typical values for
these parameters are (Ref. 4):

J,=1082.62 x 10°
loq = 6378.1 km
i =0.3986 x 10° km3/s?

For a typical ISS orbit... i
r=6378.1 km + 408 km

Circular (e=0,a =r)

i=51.6°



Variation Due to Precession of the Orbit

The "parameter" is calculated
as:

p=a(l—e?)=r

The resulting precession is:

O = -1.00634x10° rad/s

Q = -4.98 °/day



Beta Angle (°)

380

60

40

20

Variation of the Beta Angle Due to Seasonal
Variation and Orbit Precession

/\ Representative Profile:

Altitude = 408 km, Circular -
§ /\ / \ Inclination =51.6 °
| N\

[\

\ ALY
5% 100 50 200 250/ 3[}0\ 35[}/
\/

VERUVERW

1 Note: This is one of many possible profiles \/

Number of Days Since Vernal Equinox
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Consequences of Beta Angle Variation

As B changes, there are two consequences of
interest to thermal engineers:

1) The time spent in eclipse (i.e., planet shadow)
varies;

2) The intensity and direction of heating incident on
spacecraft surfaces changes;

Let's explore each of these effects.



Eclipse: Umbra and Penumbra

Umbral region - sunlight is completely obscured;

Penumbral region - sunlight is partially obscured.

Planet Sun
Not to Scale
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Orbital Sunset: From Penumbra to Umbra

NASA Photos



Eclipse: Umbra and Penumbra

If time in penumbra is minimal, analysis may be
simplified using a cylindrical shadow assumption.

Cylindrical Shadow Approximation

Umbral Shadow Cone
(Exaggerated ~4X)
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

We create a new coordinate system where the sun is
always in the xy-plane and the orbit is inclined f3;

28

ypisinto the page
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

Looking down onto the orbit plane gives us this
geometry (when 3 = 0°).

LN
N
iy
By

e ?".f"f.l..l'

Zg is out of the page
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

We seek an expression for r' which is a projection of
r onto the szB-pIane.

LN
N
iy
By

e ?".f"f.l..l'

Zg is out of the page
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Geometry for Eclipse Calculation
(Low, Circular Orbit Only)

When |r'| <r,, the spacecraft is in the umbral
shadow.

Zg is out of the page
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Calculating Umbral Eclipse Entry
(Low, Circular Orbit Only)

Spacecraft position vector, r, can be expressed as a
function of altitude above planet, h, planet radius,
r., angle from orbit noon, 0, and beta angle, [3:

7 = (r, + h)|cos 6 cos Bi + sin@ j + cos 0 sin k|

The magnitude of this vector is:

|#| = (7, + h)/cos? @ cos? § + sin? @ + cos2 @ sin2 3

This reduces to:

7| =1, +h



Calculating Umbral Eclipse Entry
(Low, Circular Orbit Only)

The projection of this vector onto the ygzs-plane is
given by:

7' = (r,+ h)[sin 8 j + cos @ sin B k|

And the magnitude is given by:

#'| = (1, + h)4/sin% 6 + cos? @ sin2 f

The onset of shadowing occurs when |r'| <r.:

(rer—i h)z ~ sin? B}

1
cos? f3

Sin 6 =
\




Calculating Umbral Eclipse Entry/Exit
(Low, Circular Orbit Only)

Now that the O of eclipse onset is known, it is a
simple matter to determine the entire eclipse period
by noting that the total angle shadowed is 2(7-0):
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Fraction of Orbit Spent in Sunlight/Eclipse

The fraction of orbit spent in sunlight and eclipse for
a circular orbit is clearly related to [3:

1 | | | | |

09 | 408 km (220 nm) Circular Orbit //
0.8
/

g o7 ,__,-*—-—-""/R Fraction Spent |
o 0.6 —T | in Sunlight
[T
g 0.5
o
s 0.4
E __-_-_-\"_""\ .
r 0.3 ‘“‘*k\\( !:ractl.on Spent |

0.2 \m Eclipse

0.1

0
0 10 20 30 40 50 60 70 80 20

B Angle (°)
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Fraction of Orbit In Sunlight

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

Variation of the Orbit Eclipse Period as a

Function of Beta Angle

N \ \ A\
/
Representative Profile:
Altitude = 408 km, Circular |
Inclination =51.6 ° N
| Note: This is one of many possible profiles
0 50 100 150 200 250 300 350

Number of Days Since Vernal Equinox
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Variation of the Heating to Surfaces as
Function of Beta Angle

To study this, we will consider an orbiting plate and
look at the effect of 3 angle on heating to a planet-
facing (N = nadir) surface.

LN R
"
iy

I\
T

-
778
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Variation of the Solar Heating to a Nadir-
Facing Surface as a Function of Beta Angle

At orbit noon (0 = 0°), the
nadir-facing surface has no
view to the incoming solar
flux;

As O varies past 90°, the

heating scales with -cos 0.
(dso1)n = —(so1 COSE cOS B

As 3 increases, the projected

. for:
area scales with cos 3;

+90° = 0 = HEE?”’IH entry
Bterm exit < 7] < +270°



Variation of the Albedo Heating to a Nadir-
Facing Surface as a Function of Beta Angle

For a given [3, at orbit noon
(6 = 0°), the nadir-facing
surface has a maximum
view to the sun lit planet;

4—
As [ increases and 0
increases from orbit noon,
I * * r 2
jche solar zenith angle, ¢, Gorn)s = (oo (r ih) cos &
increases. e
. for:
Overall, the heating scales ~90° < £ < +90°

with cos &.



Variation of the Planetary Heating to a Nadir-
Facing Surface as a Function of Beta Angle

From our assumption of a
constant planetary flux,
the planetary infrared
heating to the plate is

easily calculated as the 4—
product of the planetary

flux, scaled by the form 2
factor to the planet. (4pia),, = dpia (?‘e " )

for:
0°< 0 <+4+360°



Incident Heating Flux (W/m?)

Variation of the Heating to a Nadir-Facing

Surface as a Function of Beta Angle
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Putting It All Together



Putting It All Together

We've looked separately at:

The solar, albedo and planetary infrared heating
components;

Beta angle and its effect on heating flux and on-orbit
eclipse.

Let's pull it all together with an example problem.



Example: The Orbiting Box

Consider a box-like spacecraft orbiting Earth:

h = 408 km (Circular)
9., = 1367 W/m?
p=0.3

Opia = 236 W/m?
r,=6378.14 km

e
o

0 is in orbit plane
(green dashed line)

+*

N\

A
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Example: The Orbiting Box

Side 1 - faces away from the planet (zenith-facing)
Side 2 - faces the planet (nadir-facing)

Side 3 - faces forward (velocity vector-facing)

Side 4 - faces aft (anti-velocity vector-facing)

Side 5 - faces north

Side 6 - faces south

5

2

oY%
ﬁﬁ 5
i IR 2[4

6

Note: Side 3 not
shown
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Example: The Orbiting Box

\ >
)
\ ,.’L@b(
o
\
\ '\9
_—.I_—__ -
I

/
/

// Note: Side 6 not
7 shown

S

e

Note: Side 3 not
shown

A&

il
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i

N #
-
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"\';I 'ﬂ':y
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Example: Side 1 - Zenith-Facing Surface

The zenith-facing plate "sees" only sunlight.

p=0°

1400

B = +60°

1300 \ —Solar / 1300 | —Solar

& 1200 —Albedo &~1200 —Albedo
Planet 1 Planet
E 1100 \ anetary / §1100 ] anetary
E 1000 \ / = 1000
>=< 900 \ / § 900
o 800 w800
0o

?:D 700 c 700
“3 600 .'g 600 -
T so0 \ / T s00
. \ / T /
C 400 C 400
% 300 - \ / .8 300 -
S o \ / S \ /

100 100

01— 0
0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360

Orbit Angle from Solar Noon, 0 (°) Orbit Angle from Solar Noon, 0 (°)
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Incident Heating Flux (W/m?)

Example: Side 2 - Nadir-Facing Surface

The nadir-facing plate experiences solar, albedo and
planetary heating.
B=0° B = +60°

1 | | |
—Solar | ] 1300 —Solar
—Albedo a0 1 —Albedo

Planetary| | Planetary| |

1 / \ 300 -
AN T | / \

/ \ e Y N

0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360
Orbit Angle from Solar Noon, 0 (°) Orbit Angle from Solar Noon, 0 (°)
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Example: Side 2 - Nadir-Facing Surface

For this orbit, above | 3| =~71°, no eclipse Is
experienced.
B =+75°

1400 I I
1300 | —Solar
1200 1 —Albedo | |
— 1100 i Planetary| |
1000 _
900 7
800 _
700 _
600 _
500 _

400 -
300 N

/ ~N

200 7 S

100 _—--x / AN —
0 | T T T T “‘T\\.\- T T T T T T T T T T T T "I-/l-’ T T

0 30 60 90 120 150 180 210 240 270 300 330 360

Incident Heating Flux (W/m?

Orbit Angle from Solar Noon, 0 (°)
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Incident Heating Flux (W/m?)

Example: Side 3 - Forward-Facing Surface

Solar flux phase is shifted due to orientation of
surface;

B=0° B = +60°
—Slolar | /\ 1400 1 —Slolar |

1300
—Albedo a0 : —Albedo

m
[y
N
(=1
o

Planetary Planetary

\ = 1100

=
v o
o O
o o

[»2]
o
o

700
600

500
400 \
300

200 | \
100 | \

\

01|\!||H!||!\\| | | |!|!4||!\|\ OW| ‘.\!..!\\!\I.‘ |/-+—-\—‘I-TT_\—

|1
Incident Heating Flux (W

0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360
Orbit Angle from Solar Noon, 0 (°) Orbit Angle from Solar Noon, 0 (°)
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Incident Heating Flux (W/m?)

Example: Side 4 - Aft-Facing Surface

Solar flux phase is shifted again due to orientation of
surface -- mirror image of Forward-Facing surface;

p=0°

I I
/ —Solar ||
—Albedo | |
Planetary_
]
0 30 60 90 120 150 180 210 240 270 300 330 360

Orbit Angle from Solar Noon, 0 (°)

1400

1300

—_ =
e B N
o O O
o © o

Incident Heating Flux (W/m?)

100

B = +60°

|

Solar
—Albedo
Planetary| |

9200

800 |

700

600

500

400 -

300

200 |

30 e0 90 120 150 180 210 240 270 300 330 360

Orbit Angle from Solar Noon, 0 (°)
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Example: Side 5 - North-Facing Surface

At B = 0°, surface is edge on to sun and solar flux is

zero -- for negative 3, solar flux is zero;
B=0° B = +60°

I
—Solar

—Albedo

Planetary

—Solar

900 —Albedo ||

800 | Planetary| |

Incident Heating Flux (W/m?)

Incident Heating Flux (W/m?)

0 30 60 90 120 150 180 210 240 270 300 330 36C 0 30 60 90 120 150 180 210 240 270 300 330 360
Orbit Angle from Solar Noon, 0 (°) Orbit Angle from Solar Noon, 0 (°)
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At 3 = 0°, the surface is edge on to sun and solar

Example: Side 6 - South-Facing Surface

flux is zero -- for positive [3, solar flux is zero;

p=0°

—Solar

—Albedo

=
o =
e o
(=T =]

Planetary| |

Incident Heating Flux (W/m?)

30 60 90 120 150 180 210 240 270 300 330 360

Orbit Angle from Solar Noon, 0 (°)

B

-60°

—Solar
—Albedo [ |

Planetary |

0 30 60 9 120 150 180 210 240 270 300 330 360

Orbit Angle from Solar Noon, 0 (°)

136



Other Heating Environments



Free Molecular Heating (Refs. 11 and 12)

We define the Stanton number, St to be:

dw
St =
Pele (haw o hw)

where q,, is the convective heat flux, p, is the flow
density at the edge of the boundary layer, u, is the
flow velocity at the edge of the boundary layer, h_,
is the enthalpy at the wall assuming an adiabatic
wall temperature and h, is the enthalpy at the wall
assuming the actual wall temperature.



Free Molecular Heating (Ref. 11)

St can be thought of is the efficiency of heat transfer
from the flow field to a surface;

The numerator is the actual heating applied while
the denominator is the total available convective
energy;

From this definition, we see that:

St <1



Free Molecular Heating (Ref. 11)

We can rearrange our equation for St to solve for
the surface convective heating flux:

('?w — Stpeue (haw T hw)
We assume that:

h%CpT

This is true for a calorically perfect gas (i.e., C, and
C, are functions of T only) and may be true for a
thermally perfect gas (C, and C, are constant)
assuming C is a function of T only.



Free Molecular Heating (Ref. 11)

From this, we can say that:
h,, = C,T,

For a high energy flow field, it is reasonable to
assume that:

T, < T,

and this implies:

h,, < hyy



Free Molecular Heating (Ref. 11)

With this information, we can further simplify our
expression for the convective heating flux at the
wall:

C?w — Stpeue haw

But, this equation can be simplified even further
because if viscous effects are ignored:

Pe ¥ Poo
Ue & Uy



Free Molecular Heating (Ref. 11)
Our expression becomes:
Gy = StPoU N gy
Also,
Taw = To = hgw = hyg
SO...

QW — Stpoouooh[}



Free Molecular Heating (Ref. 11)

By definition,
h h L
= he + U5
0 2
But for high velocity flows,
1
h,, < —=u2
2
because
he = CpT,



Free Molecular Heating (Ref. 11)

T_ is typically low. The expression becomes:

1

G = StPoUes Eué

For maximum heating, St = 1.0 and the expression
becomes:

. 1 3
Qw — Epoouoo

which is our desired result.



Free Molecular Heating and Density
Dispersions
Ref. 12 describes a methodology to calculate free
molecular heating using dispersed density, p;,:

. 1 3
Qw = Epdispuoo

The dispersed density may be calculated from:

pdisp — Kp?(-}

where K is a density dispersion factor, affected by
numerous factors but most notably solar activity,
and p, is the U.S. Standard 1976 density.



Free Molecular Heating and Density
Dispersions

K factors were developed to disperse nominal
densities for different altitudes and times in the

solar cycle;

The strategy is to calculate a 3-sigma dispersed
density. (Ref. 13)



Charged Particle Heating (Ref. 14)

Charged particle heating must be considered in the
design of a system operating at cryogenic
temperatures;

Focus is to calculate the energy dissipation of

charged particles as they pass through an absorbing
medium;

The volumetric heating created as a result through
interaction with absorbing medium must be
factored into the overall heat transfer calculation.



Charged Particle Heating (Ref. 15)

Van Allen Radiation Belts
(NASA Image)
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Charged Particle Heating (Ref. 14)

Volumetric heating may be calculated as follows:

Ema:tr
: dE
Qvﬂiz Z (d_) (p(trx)E
S/E
E=Emin
Where...
dE : :
(E) is the "stopping power"
E

E is the particle energy
s isthe penetration depth

@(t,x)g isthe particle flux.



Concluding Remarks

Overview of radiation heat transfer, the solar and
infrared spectra;

Derived expressions for solar, albedo and planetary
heating fluxes;

Derived an expression for the beta angle and
investigated the effect beta has on orbit
environment heating;

Explored free molecular heating and charged
particle heating phenomena.
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