

CO₂ Freezer Testing

Presented by:

Malay Shah

malay.g.shah@nasa.gov

Jared Sass, Marty Grashik, Rene Formoso, Anne Meier, Jared Berg, Paul Hintze, Jon Bayliss, Rodolphe Carro, Arun Arora, Jonathon Gleeson

• 10 KW main power FC not shown (JSC)

- Capture only CO₂ by freezing
 - Ar & N₂ pass through
- Sublimate and store for future use
- Freezing Conditions:
 P = 7 Torr
 - T < 153 K (-120.15 °C)

Pressure-Temperature phase diagram for CO₂.

- CO₂ accumulation rate requirements based on fuel production
- Small Scale:
 - Total of 0.088 kg/hr required for CH_4 production
 - Cold heads running at optimal cycle time yielded around 0.054 kg/hr per cryocooler
 - Minimum 2 cryocoolers running in parallel
- Full Scale:
 - Targeting 1.1 kg/hr per cryocooler

Production Method	O ₂ Production Rate (kg/hr)	%Conversion/ %Recycling	Required CO ₂ Supply Rate (kg/hr)	Minimum # of Cryocoolers
O2 only, SOE	1.1	50 / 90	3.33	3
O2 only, SOE	1.1	50 / 0	6.1	6
Methane/Oxygen, Sabatier/Electrolysis	1.34	95 / 0	0.97	1

Concept – Small Scale

Concept – Small Scale

Concept – Small Scale

- Sunpower CryoTel GT cryocooler
 - ~37 W lift @ 150 K
 - 240 W input
 - External water cooling loop
 - Stirling cycle, helium working fluid
- Cold finger protrudes into freezing chamber
- Cold head mounted on cold finger with thermal grease, securing nut
- External chiller loop maintains 15°C rejection temperature
- Can be set to specific power
- Forced 1.2 SLPM and 7 Torr via vacuum pump

Design	Starburst	Ferris Wheel	Swirl/Branching	Tuning Fo	ork Starburst v2.0		
Volume Ratio	1.08	1.00	3.85	1.37	1.28		
Area Ratio	0.48	1.00	2.56	2.00	2.47		
Baseline							
Starburst	Ferris Wheel	Swirl/Bra 3D printed a	anching Tur	ning Fork	Starburst v2.0*		

Cycle Schematic

- Temperature of system must be raised and lowered repeatedly
- Thermal mass of system determines time "lost" transitioning between operational temperatures

Cycle Duration Optimization

	ork
	•
Mars	

- Given collection rate degradation over time and fixed time "costs" of cooling and heating cold heads, what is the optimal cycle (cool + freezing) time that leads to the highest average collection rate?
- Design that sacrifices early performance never recovers from "deficit"
- Plateau region can allow trades for energy efficiency or reducing power on/off cycles
- Assumption: 1:1 ratio between collection and sublimation phase

Concept – Full Scale

- AFCryo STC90 cryocooler
 - ~300-400 W lift @ 150 K
 - ~3000 W input
 - External water cooling loop
 - Stirling cycle, helium working fluid
- Cold plate protrudes into freezing chamber
- Cold head mounted on cold finger with thermal grease, securing nuts
- Cannot be set to specific power
 - On/Off only
- Will pull Mars gas from large chamber
 - Closer to actual operation

Similar Surface Area to Lift and Volume to Lift ratio as Tuning Fork

Concept – Full Scale

Current Status

- Open Questions:
 - How does optimization curve change when considering faster freezing phase compared to sublimation phase?
 - Will the current heating configuration ensure dry ice sublimates consistently over time?
 - How linear are the lift ratios from small-scale to full?
 - Must dial in cold head to maintain temperatures above freezing point of Ar/N_2
 - Does this method of operation allow non-condensing gases to be flushed away from cold head?
 - In multiple cryocooler configuration, can heat rejection be used effectively in sublimation phase?

Backup

Mid-experiment disassembly to get visual of growth pattern on cold head

