National Aeronautics and Space Administration

TFAWS ISRU

Water Capture from Soil

Aaron Paz

Previous ISRU Water Capture Systems

Assumptions for 2016 EMC study

Forward Considerations

- The rate of condensation/deposition will determine the rate vaporization within the soil processing module if it is a passive system.
- The temperature of the condenser/freezer cold surface will drive the rate of condensation/deposition
- Requirements need to capture the thermal management architecture. For example: "heat shall be removed from ISRU components using mechanically pumped ______ refrigerant with a temperature range of -____ to + ____C and a flow rate of _____ lpm" Or

"ISRU components shall include a means to reject heat directly to the Martian atmosphere"

Decision Tree

What about sorbants?

• Unless we electrolyze vapor, sorbants still require a condenser at some point

References

1)Sanders, G. B., & Larson, W. E. (2012). Progress made in lunar in situ resource utilization under NASA's exploration technology and development program. In *Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments* (pp. 457-478).

2)Gustafson, R., White, B., Fidler, M., & Muscatello, A. (2010). Demonstrating the solar carbothermal reduction of lunar regolith to produce oxygen. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (p. 1163).

3) Kleinhenz, J. E., & Paz, A. (2017). An ISRU propellant production system for a fully fueled Mars Ascent Vehicle. In *10th Symposium on Space Resource Utilization* (p. 0423).