Introduction to Machine Learning with Applications to Aeroheating Database Generation Thermal & Fluids Analysis Workshop August 22, 2023

James B. Scoggins

Aerothermodynamics Branch, NASA Langley Research Center

Provide a foundation in ML and resources for you to learn on your own 1.

- Machine learning is a very broad field, impossible to teach everything here •
- Instead, introduce core principles and vocabulary \bullet
- Resources for self-learning \bullet

Demonstrate recent examples of ML in my daily work at NASA 2.

- How to approach typical problems \bullet
- Combine physical intuition and knowledge with ML principles \bullet
- Gaussian Process regression \bullet

2

TFAWS 2023 - Intro to ML for Aeroheating

• Well-posed learning problems require experience (data), a task (prediction), and a measure of performance

- Well-posed learning problems require experience (data), a task (prediction), and a measure of performance •
- Machine learning is the science of designing computer algorithms that can <u>automatically</u> improve their performance at a • given task, as additional data are provided to them

- Well-posed learning problems require experience (data), a task (prediction), and a measure of performance •
- Machine learning is the science of designing computer algorithms that can <u>automatically</u> improve their performance at a ulletgiven task, as additional data are provided to them

Stockfish

Task: Win chess match.

Performance Measure: Number of wins

Experience: Human logic and intuition.

1. Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

AlphaZero

Task: Win chess match.

Performance Measure: Number of wins

Experience: Playing chess matches agains opponents and self.

- Well-posed learning problems require experience (data), a task (prediction), and a measure of performance \bullet
- Machine learning is the science of designing computer algorithms that can <u>automatically</u> improve their performance at a ulletgiven task, as additional data are provided to them

1. Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

AlphaZero

Task: Win chess match.

Performance Measure: Number of wins

Experience: Playing chess matches agains opponents and self.

Types of learning problems

Peng, Jury, Donnes, Ciurtin. Frontiers in Pharmacology 12:720694, 2021.

Learn a functional relationship (*model*) between data *inputs* and *outputs* to make *predictions* for unseen inputs

Supervised Learning Framework

- Given a <u>dataset</u>: $\mathcal{D} = \{(x_i, y_i) : x_i \in \Omega, y_i = f(x_i)\}$
- Given a (possibly *parametric*) model: $y = \hat{f}(x; \theta)$
- Find a model that best approximates the underlying relationship between inputs and outputs

$$\hat{f}(x; \theta^*) \approx f(x)$$

Input

Learn a functional relationship (*model*) between data *inputs* and *outputs* to make *predictions* for unseen inputs

Supervised Learning Framework

- Given a <u>dataset</u>: $\mathcal{D} = \{(x_i, y_i) : x_i \in \Omega, y_i = f(x_i)\}$
- Given a (possibly *parametric*) model: $y = \hat{f}(x; \theta)$
- Find a model that best approximates the underlying relationship between inputs and outputs

 $\hat{f}(x; \theta^*) \approx f(x)$

Key Questions

- 1. How do we know if a model is "good" (much less "best")?
- 2. What about noisy data?

Input

Examples:

- Linear Models
- Support Vector Machines
- Gaussian Processes
- Neural Networks
- Decision Trees

	/
Machine Learning	K
	_ /
)

Many models out there!

Examples:

- Linear Models \bullet
- Support Vector Machines \bullet
- Gaussian Processes \bullet
- Neural Networks \bullet
- **Decision Trees** \bullet

Choice depends on multiple factors:

- Training and evaluation cost \bullet
- Implementation and deployment \bullet
- Scalability \bullet
- Treatment of uncertainty

Machine Learning	\mathbf{X}

Given the data on the right, what are our initial thoughts?

- Observations generally increase with increasing input values \bullet
- Trend appears linear with a positive slope and negative intercept \bullet
- The trend is not perfect, noise or other unknown feature ullet

Model assumption: response is linear with nonzero intercept

$$y = \hat{f}(x; w_0, w_1) = w_0 + w_1 x$$

Given the data on the right, what are our initial thoughts?

- Observations generally increase with increasing input values ullet
- Trend appears linear with a positive slope and negative intercept \bullet
- The trend is not perfect, noise or other unknown feature ullet

Model assumption: response is linear with nonzero intercept

$$y = \hat{f}(x; w_0, w_1) = w_0 + w_1 x$$

Given the data on the right, what are our initial thoughts?

- Observations generally increase with increasing input values \bullet
- Trend appears linear with a positive slope and negative intercept \bullet
- The trend is not perfect, noise or other unknown feature ullet

Model assumption: response is linear with nonzero intercept

$$y = \hat{f}(x; w_0, w_1) = w_0 + w_1 x$$

How do we find the "best" model?

In general, we can think of data as samples of an underlying $p(y | x) = \begin{cases} 1, & y = f(x) \\ 0, & \text{otherwise} \end{cases}$, for noiseless data.

In general, we can think of data as samples of an underlying joint probability density function p(x, y) = p(y | x) p(x), where

 $p(y|x) = \begin{cases} 1, & y = f(x) \\ 0, & \text{otherwise} \end{cases}$, for noiseless data.

<u>Loss functions</u> are a measure of our model performance on supervised learning tasks (how well we approximate p(x, y))

- General rule is to make them positive and invariant to dataset size \bullet
- Decreasing loss means better model performance \bullet

In general, we can think of data as samples of an underlying joint probability density function p(x, y) = p(y | x) p(x), where

In general, we can think of data as samples of an underlying joint probability density function p(x, y) = p(y | x) p(x), where $p(y|x) = \begin{cases} 1, & y = f(x) \\ 0, & \text{otherwise} \end{cases}$, for noiseless data.

<u>Loss functions</u> are a measure of our model performance on supervised learning tasks (how well we approximate p(x, y)) General rule is to make them positive and invariant to dataset size \bullet

- Decreasing loss means better model performance \bullet

$$\mathcal{L}(\theta)[\hat{f}] = \mathbb{E}_{p(x,y)} l(y, \hat{f}(x; \theta)) \equiv \int_{\Omega}$$

Loss as function of model parameters θ for given model $\hat{f}(x; \theta)$

Expected model error over the input probability distribution p(x) for given error model l

 $l(y, \hat{f}(x; \theta)) p(x, y) dx dy$

Definition of the expectation of *l* on p(x)

In general, we can think of data as samples of an underlying joint probability density function p(x, y) = p(y | x) p(x), where $p(y|x) = \begin{cases} 1, & y = f(x) \\ 0, & \text{otherwise} \end{cases}$, for noiseless data.

<u>Loss functions</u> are a measure of our model performance on supervised learning tasks (how well we approximate p(x, y)) General rule is to make them positive and invariant to dataset size \bullet

- Decreasing loss means better model performance \bullet

$$\mathscr{L}(\theta)[\hat{f}] = \mathbb{E}_{p(x,y)} l(y, \hat{f}(x; \theta)) \equiv \int_{\Omega}$$

Loss as function of model parameters θ for given model $\hat{f}(x; \theta)$

Expected model error over the input probability distribution p(x) for given error model l

We generally don't know p(x, y) because that's what we want to model!

 $\int_{\Omega} l(y, \hat{f}(x; \theta)) p(x, y) dx dy$

Definition of the expectation of *l* on p(x)

TFAWS 2023 - Intro to ML for Aeroheating

In general, we can think of data as samples of an underlying joint probability density function p(x, y) = p(y | x) p(x), where $p(y|x) = \begin{cases} 1, & y = f(x) \\ 0, & \text{otherwise} \end{cases}$, for noiseless data.

<u>Loss functions</u> are a measure of our model performance on supervised learning tasks (how well we approximate p(x, y)) General rule is to make them positive and invariant to dataset size \bullet

- Decreasing loss means better model performance \bullet

$$\mathscr{L}(\theta)[\hat{f}] = \mathbb{E}_{p(x,y)} l(y, \hat{f}(x; \theta)) \equiv \int_{\Omega} l(y, \hat{f}(x; \theta)) p(x, y) \, dx \, dy \approx \frac{1}{N} \sum_{(x_i, y_i) \in \mathcal{D}} l(y_i, \hat{f}(x_i; \theta)) p(x, y) \, dx \, dy$$

Loss as function of model parameters θ for given model $\hat{f}(x; \theta)$

Expected model error over the input probability distribution p(x) for given error model l

We generally don't know p(x, y) because that's what we want to model!

Definition of the expectation of *l* on p(x)

"Empirical" loss, evaluated on available dataset

> approximate loss

TFAWS 2023 - Intro to ML for Aeroheating

Recall
$$\mathscr{L}(\theta)[\hat{f}] = \frac{1}{N} \sum_{(x_i, y_i) \in \mathscr{D}} l(y_i, \hat{f}(x_i; \theta))$$

Model outputs are predicted values.

Model outputs are predicted probabilities.

$$\operatorname{Recall} \mathscr{L}(\theta)[\widehat{f}] = \frac{1}{N} \sum_{(x_i, y_i) \in \mathscr{D}} l(y_i, \widehat{f}(x_i; \theta))$$

Model outputs are predicted values.

Choice depends on type of data and model.

Model outputs are predicted probabilities.

Revisiting our linear model, the MSE loss is given as lacksquare

$$\mathscr{L}(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)]^2$$

Best model is one that minimizes the loss, can derive \bullet this analytically for linear least squares loss

$$\frac{\partial \mathscr{L}}{\partial w_0} = 0 \implies w_0 = \bar{y} - w_1 \bar{x}$$
$$\frac{\partial \mathscr{L}}{\partial w_1} = 0 \implies w_1 = \frac{\bar{x}\bar{y} - \bar{x}\bar{y}}{\bar{x}^2 - \bar{x}^2}$$

How do we find the "best" model?

TFAWS 2023 - Intro to ML for Aeroheating

Revisiting our linear model, the MSE loss is given as lacksquare

$$\mathscr{L}(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)]^2$$

Best model is one that minimizes the loss, can derive ulletthis analytically for linear least squares loss

$$\frac{\partial \mathscr{L}}{\partial w_0} = 0 \implies w_0 = \bar{y} - w_1 \bar{x}$$
$$\frac{\partial \mathscr{L}}{\partial w_1} = 0 \implies w_1 = \frac{\bar{x}\bar{y} - \bar{x}\bar{y}}{\bar{x}^2 - \bar{x}^2}$$

How do we find the "best" model?

Learning nonlinear responses with linear model

In general, linear model only needs to be linear in the parameters lacksquare

$$\hat{f}(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \dots$$

- We can write this compactly as \bullet $\hat{f}(x) = \mathbf{w} \cdot \mathbf{h}(x), \quad \mathbf{w} = [w_0, w_1, w_2, \dots]^T, \quad \mathbf{h}(x) = [h_0(x), h_1(x), h_2(x), \dots]^T$
- This leads to a least-squares loss \bullet

$$\mathscr{L}(\mathbf{w}) = \frac{1}{N} \|\mathbf{y} - \mathbf{H}\mathbf{w}\|_2^2, \quad \mathbf{y} = [y_0, \dots, y_N]^T, \quad \mathbf{H} = [\mathbf{h}(\mathbf{w})]^T$$

Minimizing the loss leads to model of best fit \bullet

 $\mathbf{w} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$

• *Polynomial regression* is a linear problem! (think in terms of the weights)

$$\hat{f}(\mathbf{w}) = \mathbf{w} \cdot \mathbf{h}(x), \quad h_k(x) = x^k$$

• Using a least-squares loss function, we obtain

 $\mathbf{w} = (\mathbf{H}^T \mathbf{H}) \mathbf{H}^T \mathbf{y}$

Polynomial regression is a linear problem! lacksquare(think in terms of the weights)

$$\hat{f}(\mathbf{w}) = \mathbf{w} \cdot \mathbf{h}(x), \quad h_k(x) = x^k$$

Using a least-squares loss function, we obtain ullet

 $\mathbf{w} = (\mathbf{H}^T \mathbf{H}) \mathbf{H}^T \mathbf{y}$

Model assumption: response follows a third-order polynomial ullet

• *Polynomial regression* is a linear problem! (think in terms of the weights)

$$\hat{f}(\mathbf{w}) = \mathbf{w} \cdot \mathbf{h}(x), \quad h_k(x) = x^k$$

• Using a least-squares loss function, we obtain

 $\mathbf{w} = (\mathbf{H}^T \mathbf{H}) \mathbf{H}^T \mathbf{y}$

- Model assumption: response follows a third-order polynomial
- Looks great! But if a 3rd-order is good, why not 12th-order?

• *Polynomial regression* is a linear problem! (think in terms of the weights)

$$\hat{f}(\mathbf{w}) = \mathbf{w} \cdot \mathbf{h}(x), \quad h_k(x) = x^k$$

• Using a least-squares loss function, we obtain

 $\mathbf{w} = (\mathbf{H}^T \mathbf{H}) \mathbf{H}^T \mathbf{y}$

- Model assumption: response follows a third-order polynomial
- Looks great! But if a 3rd-order is good, why not 12th-order?

Least-squares loss favors model complexity over predictability!

Least-squares loss favors model complexity over predictability!

Least-squares loss favors model complexity over predictability!

Idea: hold back some *validation data* as a surrogate for unseen data to check model's generalizability

- Validation loss is sensitive to which data we choose to hold back ullet
- Can improve on this idea by taking the average validation loss ulletover multiple choices of train/validation sets

- Validation loss is sensitive to which data we choose to hold back \bullet
- Can improve on this idea by taking the average validation loss \bullet over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts

- Validation loss is sensitive to which data we choose to hold back lacksquare
- Can improve on this idea by taking the average validation \bullet over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts

_	 	_	
Data			K

- Validation loss is sensitive to which data we choose to hold back \bullet
- Can improve on this idea by taking the average validation loss \bullet over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts

- Validation loss is sensitive to which data we choose to hold back \bullet
- Can improve on this idea by taking the average validation loss \bullet over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts

- Validation loss is sensitive to which data we choose to hold back \bullet
- Can improve on this idea by taking the average validation loss \bullet over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts

- Validation loss is sensitive to which data we choose to hold back
- Can improve on this idea by taking the average validation loss over multiple choices of train/validation sets
- K-Fold Cross-Validation (CV)
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts

- Validation loss is sensitive to which data we choose to hold back \bullet
- Can improve on this idea by taking the average validation loss \bullet over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts

- Validation loss is sensitive to which data we choose to hold back \bullet
- Can improve on this idea by taking the average validation loss over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts
- Leave-One-Out Cross-Validation (LOOCV)
 - Special case of K-Fold CV where K is number of data points

$$\mathscr{L}^{CV} = \frac{1}{N} \sum_{i=1}^{N} l(y_i, \hat{f}(x_i; \theta_{-i}^*))$$
 trained parameters
on data without
 i^{th} point

$\overset{\bullet}{\mathscr{L}_3} \quad \begin{array}{c} \bullet \\ + \\ \mathscr{L}_4 \end{array} = K \mathscr{L}^{CV}$ \mathscr{L}_2 \mathscr{L}_1 ╋ +

- Validation loss is sensitive to which data we choose to hold back \bullet
- Can improve on this idea by taking the average validation loss \bullet over multiple choices of train/validation sets
- **K-Fold Cross-Validation (CV)**
 - 1. Split dataset into K equal parts
 - 2. For each part, train model on remaining K-1 parts and compute validation loss w.r.t. part K
 - 3. Average validation loss over all K parts
- Leave-One-Out Cross-Validation (LOOCV)
 - Special case of K-Fold CV where K is number of data points

$$\mathscr{L}^{CV} = \frac{1}{N} \sum_{i=1}^{N} l(y_i, \hat{f}(x_i; \theta_{-i}^*))$$
 trained parameters
on data without
 i^{th} point

TFAWS 2023 - Intro to ML for Aeroheating

Regularization

<u>Regularization improves generalizability by penalizing model complexity in the loss function</u>

Regularized Linear Least-Squares

- Least complex model with $\mathbf{w} = \mathbf{0}$ ullet
- "Complexity" increases as parameters become more nonzero
- Idea: Add sum of parameters squared to loss ullet

$$\mathscr{L}(\mathbf{w}) = \frac{1}{N} \|\mathbf{y} - \mathbf{H}\mathbf{w}\|_2^2 + \lambda \mathbf{w}^T \mathbf{w}, \quad \lambda \ge 0$$

least-squares regularization loss

Minimizing regularized loss leads to \bullet

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + N\lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Regularization

Regularization improves generalizability by penalizing model complexity in the loss function

Regularized Linear Least-Squares

- Least complex model with $\mathbf{w} = \mathbf{0}$
- "Complexity" increases as parameters become more nonzero
- Idea: Add sum of parameters squared to loss

$$\mathscr{L}(\mathbf{w}) = \frac{1}{N} \|\mathbf{y} - \mathbf{H}\mathbf{w}\|_2^2 + \lambda \mathbf{w}^T \mathbf{w}, \quad \lambda \ge 0$$

least-squares regularization loss

• Minimizing regularized loss leads to

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + N\lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Generally a good idea to *normalize* dataset prior to model training!

Examples:

• "Standard" normalization centers and scales to unit variance

$$\hat{x} = \frac{x - \bar{x}}{\sigma_x}$$

• "Min-Max" transforms data into range of [0,1]

$$\hat{x} = \frac{x - \min x}{\max x - \min x}$$

Notes:

- Choice depends on model, algorithm, data
- Perform on inputs and outputs
- Remember to denormalize predictions!

17

Generally a good idea to *normalize* dataset prior to model training!

Examples:

"Standard" normalization centers and scales to unit variance

$$\hat{x} = \frac{x - \bar{x}}{\sigma_x}$$

• "Min-Max" transforms data into range of [0,1]

$$\hat{x} = \frac{x - \min x}{\max x - \min x}$$

Notes:

- Choice depends on model, algorithm, data lacksquare
- Perform on inputs and outputs
- Remember to denormalize predictions!

Regularized 5th-Order Polynomial

- Gather data 1.
 - Often the most challenging part of ML! \bullet
 - Study, plot, reason about, clean up, etc. \bullet
 - Ensure dataset covers all potential outcomes and is evenly weighted \bullet
- Normalize dataset 2.
- Split into train, validation, and test datasets (shuffle) 3.
- 4. Perform model selection / hyper parameter tuning
 - Look to maximize generalizability and prevent overfitting ullet
 - **Cross-validation** \bullet
- Train chosen model(s) 5.
- Deploy model 6.
 - Monitor performance and go back to (1) if needed \bullet

What about noise?

- So far, we have neglected the *noise* in our data ullet
- Noise represents *uncertainty* or *randomness* in the *generating* \bullet process used to create the data
 - Latent (hidden) variables \bullet
 - Measurement uncertainties \bullet
 - Model uncertainties (for derived data) \bullet
- From a modeling perspective, noise represents potential ulleterror in our model, because we are using imperfect data
- Interested in knowing the uncertainty in our model predictions ullet
- Not a course on <u>Uncertainty Quantification (UQ)</u>: \bullet instead we will try to get a flavor of the ideas involved

Data generation is an inherently complex process!

- We can try to model this process by approaching the supervised learning task in a new way
 - Instead of looking for model that best fits the data, \bullet
 - Look for model that is most likely to generate that data ullet
 - In general, these types of models are called *generative models* ullet

How can build a model that can generate data that "looks" like ours?

- Obviously, we accept that this isn't the real generating process \bullet
- However, this will be a useful strategy \bullet
- Key Idea: Add randomness to our model that mimics the randomness present in the data \bullet

TFAWS 2023 - Intro to ML for Aeroheating

Recall that our generalized linear model takes the form ullet

 $\hat{f}(x) = \mathbf{w} \cdot \mathbf{h}(x)$

We can modify this by incorporating a random variable ε which \bullet represents the noise in our generative model

 $\hat{f}(x) = \mathbf{w} \cdot \mathbf{h}(x) + \boldsymbol{\varepsilon}$

deterministic stochastic

- Note that the addition of ε into our linear model makes our lacksquaremodel output random as well!
- Subtle point: we are implicitly assuming that the noise is ulletindependent of input location (not always true)
- Left with 2 key problems: ullet
 - 1. What is the probability density of the stochastic component?
 - 2. How can we fit a random model to our data?

In general, this will depend on your data and any knowledge you may have about the generating mechanism

- For now, let's think of the key characteristics of our noise \bullet
 - As written, it represents a deviation from the deterministic trend \bullet
 - Can be positive or negative lacksquare
 - Likely to be closer to the nominal than far away \bullet
- These characteristics suggest that a Gaussian (normal) distribution with zero mean is a reasonable choice \bullet

 $p(\varepsilon) = \mathcal{N}(0, \sigma^2)$

Recall that our generative linear model is random, therefore, it has a probability density lacksquare

$$\hat{y} = \hat{f}(x) = \mathbf{w} \cdot \mathbf{h}(x) + \varepsilon, \quad p(\varepsilon) = \mathcal{N}(0,\sigma^2)$$

- The probability density of the sum of a normally distributed random variable and a scalar shifts the mean $p(\hat{y} | \mathbf{w}, x, \sigma^2) = \mathcal{N}(\mathbf{w} \cdot \mathbf{h}(x), \sigma^2)$
- The value of this distribution for a given set of parameters, input, and noise variance, is often called the *likelihood* because it represents how "likely" the model will output that particular value
- We can therefore define a *dataset likelihood* as the likelihood that our model will generate our particular dataset as \bullet

$$L = p(\mathbf{y} | \mathbf{x}, \mathbf{w}, \sigma^2) = \prod_{i=1}^{N} p(y_i | x_i, \mathbf{w}, \sigma^2) = \prod_{i=1}^{N} \mathcal{N}(\mathbf{w} \cdot \mathbf{h})$$

 $\mathbf{n}(x_i), \sigma^2$

The *Maximum likelihood estimate* (MLE) maximizes the likelihood of generating the dataset with the model

• Specifically, we minimize the negative log dataset likelihood (NLL) for w and σ^2

$$\frac{\partial \mathscr{L}}{\partial \mathbf{w}} = 0 \implies \sigma^2 = \frac{1}{N} \sum_{i=1}^N (y_i - \mathbf{w} \cdot \mathbf{h}(x_i))^2 \quad \longleftarrow$$

mean squared-error

Using our generative model, we can create fake datasets and see how our model parameters would be effected.

- For linear models, can derive analytical probability density of parameters, taking noise into account (give this a try!)
- Sampling from this distribution, provides a notion of predictive model uncertainty

Using our generative model, we can create fake datasets and see how our model parameters would be effected.

- For linear models, can derive analytical probability density of parameters, taking noise into account (give this a try!)
- Sampling from this distribution, provides a notion of predictive model uncertainty

Summarizing prediction and variance for linear MLE model (skipping the details) ullet

$$\hat{y} = \hat{f}(x) = \mathbf{h}(x)^T \mathbf{w} = \mathbf{h}(x)^T (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$$

$$\hat{\sigma}^2(x) = \mathbf{h}^T(x) \operatorname{cov}\{\mathbf{w}\} \mathbf{h}(x) = \sigma^2 \mathbf{h}^T(x)(\mathbf{H}^T\mathbf{H})^{-1}\mathbf{h}(x)$$

TFAWS 2023 - Intro to ML for Aeroheating

Generalization of the Gaussian distribution for random scalars to random functions

 $x \sim \mathcal{N}(m, \sigma^2)$

Generalization of the Gaussian distribution for random scalars to random functions

 $x \sim \mathcal{N}(m, \sigma^2)$

Generalization of the Gaussian distribution for random scalars to random functions

 $x \sim \mathcal{N}(m, \sigma^2)$

$$f(x) \sim p(f \mid x) = \mathscr{GP}(\mu, k)$$

$$\implies \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \end{bmatrix} \sim \mathscr{N} \left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \mu(x_3) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & k(x_1, x_3) \\ k(x_2, x_1) & k(x_2, x_2) & k(x_2, x_3) \\ k(x_3, x_1) & k(x_3, x_2) & k(x_3, x_3) \end{bmatrix} \right)$$

$$f(x) \sim p(f|x) = \mathcal{GP}(\mu, k)$$

$$\implies \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \mu(x_3) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & k(x_1, x_3) \\ k(x_2, x_1) & k(x_2, x_2) & k(x_2, x_3) \\ k(x_3, x_1) & k(x_3, x_2) & k(x_3, x_3) \end{bmatrix} \right)$$

posterior

$$\hat{f}(x) \sim p(f | \mathcal{D}, x) = \mathcal{GP}(\hat{\mu}, \hat{k})$$

$$\hat{\mu}(x) = \mu(x) + k(x, X) k(X, X)^{-1} (y - \mu(X))$$

$$\hat{k}(x, x') = k(x, x') + k(x, X) k(X, X)^{-1} k(X, x')$$

$$f(x) \sim p(f|x) = \mathcal{GP}(\mu, k)$$

$$\implies \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \mu(x_3) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & k(x_1, x_3) \\ k(x_2, x_1) & k(x_2, x_2) & k(x_2, x_3) \\ k(x_3, x_1) & k(x_3, x_2) & k(x_3, x_3) \end{bmatrix} \right)$$

posterior

$$\hat{f}(x) \sim p(f | \mathcal{D}, x) = \mathcal{GP}(\hat{\mu}, \hat{k})$$

$$\hat{\mu}(x) = \mu(x) + k(x, X) k(X, X)^{-1} (y - \mu(X))$$

$$\hat{k}(x, x') = k(x, x') + k(x, X) k(X, X)^{-1} k(X, x')$$

$$f(x) \sim p(f|x) = \mathcal{GP}(\mu, k)$$

$$\implies \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \mu(x_3) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & k(x_1, x_3) \\ k(x_2, x_1) & k(x_2, x_2) & k(x_2, x_3) \\ k(x_3, x_1) & k(x_3, x_2) & k(x_3, x_3) \end{bmatrix} \right)$$

posterior

$$\hat{f}(x) \sim p(f | \mathcal{D}, x) = \mathcal{GP}(\hat{\mu}, \hat{k})$$

$$\hat{\mu}(x) = \mu(x) + k(x, X) k(X, X)^{-1} (y - \mu(X))$$

$$\hat{k}(x, x') = k(x, x') + k(x, X) k(X, X)^{-1} k(X, x')$$

$$f(x) \sim p(f|x) = \mathcal{GP}(\mu, k)$$

$$\implies \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \mu(x_3) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & k(x_1, x_3) \\ k(x_2, x_1) & k(x_2, x_2) & k(x_2, x_3) \\ k(x_3, x_1) & k(x_3, x_2) & k(x_3, x_3) \end{bmatrix} \right)$$

posterior

$$\hat{f}(x) \sim p(f | \mathcal{D}, x) = \mathcal{GP}(\hat{\mu}, \hat{k})$$

$$\hat{\mu}(x) = \mu(x) + k(x, X) k(X, X)^{-1} (y - \mu(X))$$

$$\hat{k}(x, x') = k(x, x') + k(x, X) k(X, X)^{-1} k(X, x')$$

Example 1: Uranus Aerocapture

Early Career Initiative (ECI) Project

- Demonstrate *aerocapture* as a viable alternative to propulsive orbit insertions for Gas Giant orbiter and probe missions
- **Benefits:** \bullet
 - Increased payload capacity
 - Decrease cruise time

Aeroheating database generation

J

Aeroheating database generation

Body Coordinate	Convective Heat Flux	Wall Pressure	Shear Stress
<i>s</i> ₁	q_1	p_{w1}	$ au_{w1}$
• • •	• • •	• • •	• • •
s_N	q_N	p_{wN}	$ au_{wN}$

Axisymmetric forebody dataset

Input Data

Output Data

Body Coordinate	Convective Heat Flux	Wall Pressure	Shear Stress
<i>s</i> ₁	q_1	p_{w1}	$ au_{w1}$
• • •	• • •	• • •	• • •
s _N	q_N	p_{wN}	$ au_{wN}$

Axisymmetric forebody dataset

Input Data

Want to create surrogate models that fit the data and provide surface heat flux, pressure, and shear stress over entire state-space of interest in order to provide estimates over computed trajectories

- Maintain physical scaling when making predictions outside of the dataset range
- Estimate model uncertainties

Output Data

Body Coordinate	Convective Heat Flux	Wall Pressure	Shear Stress
<i>s</i> ₁	q_1	p_{w1}	$ au_{w1}$
• • •	• • •	• • •	• • •
s _N	q_N	p_{wN}	$ au_{wN}$

- Good opportunity to ask "What do I know about my data?" ullet
 - Dimensionality reduction, known scaling laws or engineering correlations, limits or bounds? \bullet
 - Sutton-Graves model for max convective heating: \bullet

$$q_{conv}^{max} = K \sqrt{\frac{\rho_{\infty}}{R_n}} V_{\infty}^3$$

Newtonian pressure theory: \bullet

$$C_p^{max} = \frac{p_{max} - p_{\infty}}{\frac{1}{2}\rho_{\infty}V_{\infty}^2} \approx 2 \implies p_{max} \approx A\rho_{\infty}V_{\infty}^2$$

 \bullet

$$\theta_{max} = C_{\theta} \ \rho_{\infty}^{m_{\theta}} \ V_{\infty}^{n_{\theta}}$$

Suggests that maximum value of QoIs for each freestream condition follow generalized Sutton-Graves relation

TFAWS 2023 - Intro to ML for Aeroheating

The generalized Sutton-Graves model is linear in it's parameters with appropriate transformation! lacksquare

 $\theta_{max} = C_{\theta} \rho_{\infty}^{m_{\theta}} V_{\infty}^{n_{\theta}} \implies \ln \theta_{max} = \ln C_{\theta} + m_{\theta} \ln \rho_{\infty} + n_{\theta} \ln V_{\infty}$

Normalizing all the data by our new fits reduces the dimensionality of the problem to the body coordinate ullet

Example 2: Aerofusion Early Career Initiative

		1.4	
	C _D	1.2	
		1.0	
		0.8	
		0.6	
		0.4	-
		0.2	
		1.	2
			1.0 An 0.8
			"IL
			~//

See recent publications for more details about the project:

- Snyder et al. "AeroFusion: Data Fusion and Uncertainty Quantification for Lander Vehicles." SciTech 2023. AIAA 2023-1182. \bullet
- ۲ 2023. AIAA 2023-1185.

Scoggins et al. "Multi-hierarchy Gaussian Process Models for Probabilistic Aerodynamic Databases using Uncertain Nominal and Off- Nominal Configuration Data." SciTech

Typical data is noisy, with varying degrees of fidelity to flight vehicle

- Data continuously updated as design matures
- Different levels of fidelity in computational tools
- Wind tunnel models approximate vehicle geometry and roughness
- Wind tunnels cannot always reproduce flight conditions

Current state of the practice: "UQ by Inspection"

Nominal aerocoefficients constructed using expert judgment, given multiple sources of data.

Uncertainty buildup based on dispersion factors, tuned to cover varying data sources.

Typical data is noisy, with varying degrees of fidelity to flight vehicle

- Data continuously updated as design matures
- Different levels of fidelity in computational tools
- Wind tunnel models approximate vehicle geometry and roughness
- Wind tunnels cannot always reproduce flight conditions

Current state of the practice: "UQ by Inspection"

Nominal aerocoefficients constructed using expert judgment, given multiple sources of data.

Uncertainty buildup based on dispersion factors, tuned to cover varying data sources.

Want to "learn" a surrogate conditional probability distribution, given all data sources

- p(y | x) defines the "probability of outcome y given x"
- surrogate model is "stochastic" but not "random"

- Multiple sources of data of increasing fidelity
 - Increasing CFD mesh resolutions
 - Heat flux correlations and 3D CFD solutions
 - CFD solutions and wind tunnel data

- Multiple sources of data of increasing fidelity
 - Increasing CFD mesh resolutions
 - Heat flux correlations and 3D CFD solutions
 - CFD solutions and wind tunnel data
- Low fidelity is dense and cheap to obtain, high fidelity is sparse and expensive

- Multiple sources of data of increasing fidelity
 - Increasing CFD mesh resolutions
 - Heat flux correlations and 3D CFD solutions
 - CFD solutions and wind tunnel data
- Low fidelity is dense and cheap to obtain, high fidelity is sparse and expensive
- **Goal:** use low fidelity data to inform high fidelity model (with uncertainties)

- Multiple sources of data of increasing fidelity
 - Increasing CFD mesh resolutions \bullet
 - Heat flux correlations and 3D CFD solutions \bullet
 - CFD solutions and wind tunnel data \bullet
- Low fidelity is dense and cheap to obtain, high fidelity is sparse and expensive
- **Goal:** use low fidelity data to inform high fidelity model (with uncertainties)
- Autoregressive (AR1) model [1] linearly combines GP lacksquaremodels for increasing fidelity levels

$$f_k(x) = \rho_k f_{k-1}(x) + \delta_k(x)$$

[1] Kennedy and O'Hagan. *Biometrika* 87:1-13, 2000.

Diagram of the AR1 multifidelity GP model.

- Multiple sources of data of increasing fidelity
 - Increasing CFD mesh resolutions \bullet
 - Heat flux correlations and 3D CFD solutions \bullet
 - CFD solutions and wind tunnel data \bullet
- Low fidelity is dense and cheap to obtain, high fidelity is sparse and expensive
- **Goal:** use low fidelity data to inform high fidelity model (with uncertainties)
- Autoregressive (AR1) model [1] linearly combines GP lacksquaremodels for increasing fidelity levels

$$f_k(x) = \rho_k f_{k-1}(x) + \delta_k(x)$$

Requires an obvious hierarchy of fidelity levels!

[1] Kennedy and O'Hagan. *Biometrika* 87:1-13, 2000.

Diagram of the AR1 multifidelity GP model.

- Real world data typically cannot be organized into ullethierarchy of fidelity levels with single "truth"
- Easier to categorize "nominal" and "off-nominal" data ullet

Orion heatshield models used in 133-CA test campaign in the National **Transonic Facility**

Symmetric, Smooth

Data + second effect (X_2, y_2) + first effect (X_1, y_1) nominal

- Real world data typically cannot be organized into hierarchy of fidelity levels with single "truth"
- Easier to categorize "nominal" and "off-nominal" data

Orion heatshield models used in 133-CA test campaign in the National Transonic Facility

Symmetric, Smooth

Data + second effect (X_2, y_2) + first effect (X_1, y_1) nominal

Predictive Distribution $f(x) = f_0(x) + w_1 \Delta f_1(x) + w_2 \Delta f_2(x)$

- Real world data typically cannot be organized into hierarchy of fidelity levels with single "truth"
- Easier to categorize "nominal" and "off-nominal" data

- Real world data typically cannot be organized into lacksquarehierarchy of fidelity levels with single "truth"
- Easier to categorize "nominal" and "off-nominal" data \bullet

Orion heatshield models used in 133-CA test campaign in the National **Transonic Facility**

- Real world data typically cannot be organized into lacksquarehierarchy of fidelity levels with single "truth"
- Easier to categorize "nominal" and "off-nominal" data lacksquare

Orion heatshield models used in 133-CA test campaign in the National **Transonic Facility**

- Real world data typically cannot be organized into lacksquarehierarchy of fidelity levels with single "truth"
- Easier to categorize "nominal" and "off-nominal" data lacksquare

Orion heatshield models used in 133-CA test campaign in the National **Transonic Facility**

Orion "IDAT" Geometry with coordinates, forces, and moments. Slices of data around Mach 0.3 and Reynolds 7.5x10⁶.

[1] Brauckmann. CAP WTT Report EG-CAP-12-65, NASA LaRC, 2022 (under preparation).

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x10⁶.

TFAWS 2023 - Intro to ML for Aeroheating

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x10⁶.

TFAWS 2023 - Intro to ML for Aeroheating

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x10⁶.

TFAWS 2023 - Intro to ML for Aeroheating

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x10⁶.

TFAWS 2023 - Intro to ML for Aeroheating

"out-of-distribution" uncertainty in regions of no data

- State-of-the-practice uses random dispersion offsets from the nominal for Monte Carlo trajectory simulations •
- Proposed approach allows for function sampling that is more consistent with underlying conditional distribution lacksquare
- Each function is a plausible explanation of the data, reproduces conditional distribution in aggregate

Aerodynamic coefficient function samples at Mach 0.5 and Reynolds 7.5x10⁶.

Probability distributions for derived quantities

Model distributions can be used to obtain conditional distributions on derived quantities of interest

Example: <u>trim angle of attack</u> found using *Bayes' Theorem* ullet

 $p(\alpha = \alpha_{\text{trim}}) = p(\alpha | C_{\text{m,cg}} = 0) \propto p(C_{\text{m,cg}} = 0 | \alpha) p(\alpha)$

TFAWS 2023 - Intro to ML for Aeroheating

Example: <u>trim angle of attack</u> found using *Bayes' Theorem* lacksquare

$$p(\alpha = \alpha_{\text{trim}}) = p(\alpha | C_{\text{m,cg}} = 0) \propto \frac{p(C_{\text{m,cg}} = 0 | \alpha)}{p(\alpha)} p(\alpha)$$

Probability of pitching moment being zero for given alpha is lacksquaredirectly obtained from model distribution (Gaussian)

TFAWS 2023 - Intro to ML for Aeroheating

Example: <u>trim angle of attack</u> found using *Bayes' Theorem*

$$p(\alpha = \alpha_{\text{trim}}) = p(\alpha | C_{\text{m,cg}} = 0) \propto p(C_{\text{m,cg}} = 0 | \alpha) \frac{p(\alpha)}{p(\alpha)}$$

- Probability of pitching moment being zero for given alpha is lacksquaredirectly obtained from model distribution (Gaussian)
- Using an "uninformative" prior for the probability of angle of \bullet attack yields the desired result

41

Example: trim angle of attack found using Bayes' Theorem

$$p(\alpha = \alpha_{\text{trim}}) = p(\alpha | C_{\text{m,cg}} = 0) \propto p(C_{\text{m,cg}} = 0 | \alpha) p(\alpha)$$

- Probability of pitching moment being zero for given alpha is \bullet directly obtained from model distribution (Gaussian)
- Using an "uninformative" prior for the probability of angle of lacksquareattack yields the desired result

Example: <u>trim angle of attack</u> found using *Bayes' Theorem*

$$p(\alpha = \alpha_{\text{trim}}) = p(\alpha | C_{\text{m,cg}} = 0) \propto p(C_{\text{m,cg}} = 0 | \alpha) p(\alpha)$$

- Probability of pitching moment being zero for given alpha is \bullet directly obtained from model distribution (Gaussian)
- Using an "uninformative" prior for the probability of angle of lacksquareattack yields the desired result
- Orion v0.60 DB nominal and 100% CI bounds [1] provided for comparison

[1] Bibb, Walker, Brauckmann, Robinson. 29th AIAA Applied Aero. Conf., No. 2011-3507, 2011.

TFAWS 2023 - Intro to ML for Aeroheating

Where to find additional resources:

- Books I recommend
 - I. Goodfellow, Y. Bengio, A. Courville. *Deep Learning*. MIT Press, 2016. (www.deeplearningbook.org)
 - C.E. Rasmussen, C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006. (gaussianprocess.org/gpml)
 - S. Rogers, M. Girolami. A First Course in Machine Learning, 2nd Ed. CRC Press, 2017.
 - D.S. Sivia. *Data Analysis: A Bayesian Tutorial*. Oxford University Press, 2006.
 - R.B. Gramacy. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. CRC Press, 2020. (bobby.gramacy.com/surrogates)

• Free online courses

- Stanford CS230: Deep Learning. Video lectures available at <u>cs230.stanford.edu/lecture</u>.
- MIT 6.036: Introduction to Machine Learning. Course notes and lectures at openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019.
- **Python packages**: scikit-learn, Pytorch, Tensorflow, JAX, GPy, ...

Backup

- Networks are trained with/without data, but regularized using physical laws ullet
- Loss function constructed from data term and residuals of governing equations \bullet
- Boundary conditions treated like data (constrained) or enforced by construction (unconstrained) of the neural network \bullet

Physics Informed Neural Networks

- Networks are trained with/without data, but regularized using physical laws
- Loss function constructed from data term and residuals of governing equations
- Boundary conditions treated like data (constrained) or enforced by construction (unconstrained) of the neural network

Conventional Discretization Approaches (CFD)

- Space discretization leads to large system of ODEs
- Solution defined and dependent on mesh discretization
- Solution satisfies system of PDEs in a weak sense
- Rigorous theory for convergence and stability

Physics Informed Neural Networks

- Networks are trained with/without data, but regularized using physical laws \bullet
- Loss function constructed from data term and residuals of governing equations \bullet
- Boundary conditions treated like data (constrained) or enforced by construction (unconstrained) of the neural network

Conventional Discretization Approaches (CFD)

- Space discretization leads to large system of ODEs •
- Solution defined and dependent on mesh discretization
- Solution satisfies system of PDEs in a weak sense \bullet
- Rigorous theory for convergence and stability

Deep-Learning Approach

- PDEs converted into large optimization problem on params. •
- Solution dependent on training points, defined everywhere
- Solution satisfies system of PDEs in a continuous sense
- Convergence and stability are active fields of research

What's a Neural Network?

 \bullet

Conceptional View

Nothing more than a function mapping an input space to an output space via a series of linear/nonlinear transformations

What's a Neural Network?

 \bullet

Practical Layerwise

Implementation

Nothing more than a function mapping an input space to an output space via a series of linear/nonlinear transformations

2. Build a NN to approximate u(x)

 $\hat{u}(x;\theta) \approx u(x)$

3. Distribute colocation points in the domain and boundary

$$\hat{\Omega} = \{x_i : x_i \in \Omega\}$$

$$\hat{\Gamma} = \{x_i : x_i \in \Gamma\}$$

 $\hat{u}(x;\theta) \approx u(x)$

3. Distribute colocation points in the domain and boundary

$$\hat{\Omega} = \{x_i : x_i \in \Omega\}$$

$$\hat{\Gamma} = \{x_i : x_i \in \Gamma\}$$

4. Construct loss function from residual operators

3. Distribute colocation points in the domain and boundary

$$\hat{\Omega} = \{x_i : x_i \in \Omega\}$$

$$\hat{\Gamma} = \{x_i : x_i \in \Gamma\}$$

5. Minimize the loss function with respect to network parameters

$$\hat{u} = \hat{u}(x; \theta^*), \quad \operatorname*{argmin}_{\theta} \mathscr{L}(\theta)$$

4. Construct loss function from residual operators

- Interested in assessing the heating predictions obtained with \bullet neural networks in "simple" configurations at high speed
- Previous literature is not concerned with heating \bullet

Governing equations.

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = \frac{\partial F^{v}}{\partial x} + \frac{\partial G^{v}}{\partial y}, \quad \forall (x, y) \in \Omega$$
$$U = \begin{bmatrix} \rho \\ \rho u \\ \rho u \\ \rho v \\ \rho E \end{bmatrix}, \quad F = \begin{bmatrix} \rho u \\ \rho u^{2} + p \\ \rho uv \\ \rho uv \\ \rho u H \end{bmatrix}, \quad G = \begin{bmatrix} \rho v \\ \rho uv \\ \rho uv \\ \rho v^{2} + p \\ \rho v H \end{bmatrix}, \quad F^{v} = \begin{bmatrix} 0 \\ \tau_{xx} \\ \tau_{xy} \\ \tau_{xy} v - q_{x} \end{bmatrix}, \quad G^{v} = \begin{bmatrix} \tau_{yx} \\ \tau_{yx} \\ \tau_{yx} u + \tau_{xy} v - q_{x} \end{bmatrix}$$

$$p = \frac{\rho T}{\gamma M_{\infty}^2}, \quad E = \frac{1}{\gamma - 1} \frac{p}{\rho} + \frac{u^2 + v^2}{2}$$

$$\tau_{xx} = \hat{\mu} \left(\frac{4}{3} \frac{\partial u}{\partial x} - \frac{2}{3} \frac{\partial v}{\partial y} \right), \quad \tau_{yy} = \hat{\mu} \left(\frac{4}{3} \frac{\partial v}{\partial y} - \frac{2}{3} \frac{\partial u}{\partial x} \right), \quad \tau_{xy} = \tau_{yx} = \hat{\mu} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right), \quad q_x = -k \frac{\partial T}{\partial x},$$

$$\hat{\mu} = \frac{1}{\operatorname{Re}_{\infty}} \frac{C + T_{\infty}}{C + T_{\infty}T} T^{3/2}, \quad k = \frac{\hat{\mu}}{(\gamma - 1)M_{\infty}^2 \operatorname{Pr}}$$

s for perfect gas

Loss function in Python code.

	<pre>def steady_navier_stokes_2d(coords, prim_vars): rho = prim_vars[:,0:1] T = prim_vars[:,1:2] u = prim_vars[:,2:3] v = prim_vars[:,3:] p = rho*T/(gamma*M_inf**2)</pre>
	mu = (s2 + T_inf) * tf.maximum(T,1.0)**1.5 / (s2 + T_inf*tf.maximum(k = mu / ((gamma-1) * M_inf**2 * Pr)
	<pre>rho_x, rho_y, T_x, T_y, u_x, u_y, v_x, v_y = gradients(prim_vars, co p_x, p_y = [dde.grad.jacobian(p, coords, j=j) for j in range(2)]</pre>
1	<pre>tauxx = mu * ((4.0/3.0)*u_x - (2.0/3.0)*v_y) tauyy = mu * ((4.0/3.0)*v_y - (2.0/3.0)*u_x) tauxy = mu * (u_y + v_x)</pre>
0	$qx = -k * T_x$ $qy = -k * T_y$
$ au_{yx}$ $ au_{yy}$	<pre>tauxx_x = dde.grad.jacobian(tauxx, coords, j=0) tauxy_x, tauxy_y = [dde.grad.jacobian(tauxy, coords, j=j) for j in rationallyy_y = dde.grad.jacobian(tauyy, coords, j=1)</pre>
$+ \tau_{yy} v - q_y \bigg]$	qx_x = dde.grad.jacobian(qx, coords, j=0) qy_y = dde.grad.jacobian(qy, coords, j=1)
$q_y = -k\frac{\partial T}{\partial y}$	<pre>mass = rho*(u_x + v_y) + u*rho_x + v*rho_y x_mtm = rho*(u*u_x + v*u_y) + p_x - (tauxx_x + tauxy_y)/Re_inf y_mtm = rho*(u*v_x + v*v_y) + p_y - (tauxy_x + tauyy_y)/Re_inf energy = (rho*(u*u*u_x + u*v*(v_x+u_y) + v*v*v_y) + gamma/(gamma-1.0)*(u*p_x + v*p_y - T*(u*rho_x + v*rho_y)/(gamma*M_inf**2)) - (u*tauxx_x + tauxx*u_x + v*tauxy_x + tauxy*v_x + u*tauxy_y + tauxy*u_y + v*tauyy_y + tauyy*v_y - qx_x - qy_y) / Re_inf)</pre>
	<pre>return [mass, x_mtm, y_mtm, energy]</pre>

47

Freestream conditions \bullet

M_∞	Re_{∞}	T_{∞} [K]	T _{wall} [K]	γ	<i>C</i> [K]	Pr
3.0	5.0×10^{4}	300.0	300.0	1.4	110.33	0.72

- Network architecture and training ullet
 - Dense feed-forward network, 6 hidden layers with 32 nodes \bullet
 - Layer-wise adaptive activation function \bullet
 - 50,000 Adam iterations with learning rate of 0.001 \bullet
 - Further converged with L-BFGS algorithm ullet
- LAURA results \bullet
 - 81x227 node grid \bullet
 - Mesh adaptation to resolve shock \bullet

TFAWS 2023 - Intro to ML for Aeroheating

- 1.2658-1.14011.0144- 0.8887 0.7630
- 1.3551
- 1.2656
- -1.1761
- -1.0866
- 0.9971
- 1.00
- -0.75
- 0.50
- 0.25
- 0.00
- 0.07503
- 0.05596
- 0.03689
- 0.01782
- -0.00124

Wall-normal slice at $x \approx 0.25$

- Boundary and shock layers well resolved with PINN
- Heat flux computed along the entire wall (continuous function) by taking gradient of temperature solution network
- Does not require gradient approximation/interpolation as with CFD solution

