TFAWS Active Thermal Paper Session

Mini-Membrane Evaporator for Contingency Spacesuit Cooling

Janice V. Makinen, NASA JSC **Grant Bue, NASA JSC** Aaron Colunga, Matthew Vogel, Jacobs Technology

Presented By

Janice V. Makinen, NASA JSC

Thermal & Fluids Analysis Workshop **TFAWS 2014** August 4 - 8, 2014 NASA Glenn Research Center Cleveland, OH

GRC · 2014

Introduction-Advanced PLSS

- A new Portable Life Support System is being developed at NASA JSC.
- Includes new technology development hardware;
 - Spacesuit Water Membrane Evaporator for heat rejection
 - High-speed ventilation fan
 - Primary and Secondary oxygen regulators
 - Rapid-Cycle Amine (CO2 removal)
- Integrated PLSS testing completed at a breadboard level in 2011 (PLSS 1.0)

Packaging the PLSS into 'backpack' began in 2013 (PLSS 2.0)

PLSS 1.0 Testing

Introduction

- The current Extravehicular Mobility Unit (EMU) utilizes a secondary oxygen vessel (SOV) for contingency breathing oxygen and cooling of the crewmember during an EVA anomaly.
 - Sublimator failure
 - Power failure
- The SOV flows high pressure oxygen through the LCVG to cool the crewmember.
- Some drawbacks of the SOV include:
 - Very high pressure charge: 6000 psi
 - Primary oxygen vessel (POV) is charged only to 3000 psi and is smaller
 - Cannot be recharged on orbit after use—must be returned for service
 - Provides only 30 minutes of get-back time

Introduction-PLSS 2.0

- During packaging analyses for PLSS 2.0, it became clear that more space was needed to package all of the components
- A proposed solution was to eliminate the SOV and replace it with a smaller tank, identical to the POV.
 - Rely on new, smaller SOV for contingency breathing oxygen only
 - Create an Auxiliary Cooling Loop (ACL), which relies on a small membrane evaporator for heat rejection.
- Advantages to identical Primary and Secondary oxygen tanks include;
 - More available volume inside of PLSS package
 - Component similarity
 - Rechargeable on-orbit

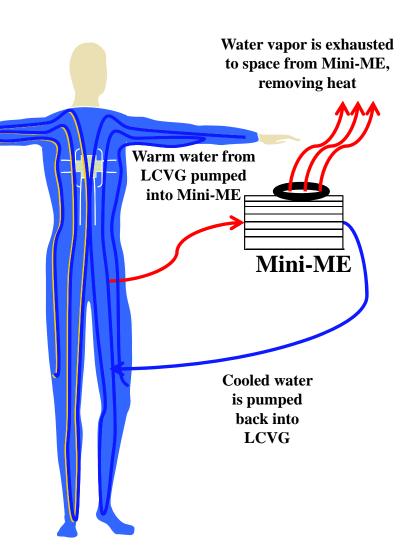
Auxiliary Cooling Loop Overview

Auxiliary Cooling Loop consists of;

- Small Membrane Evaporator, Mini-ME, utilizing same technology as the primary heat rejection device for the PLSS, the Spacesuit Water Membrane Evaporator (SWME)
- Independent pump
- Independent power supply
- Independent LCVG tubing in the vest area only
- Independent feedwater assembly
- Independent controller

Advantages of the ACL

- Can be recharged on orbit
- Can provide more get-back time
- Completely independent system


Auxiliary Cooling Loop Overview

- Mini-ME is an evaporative cooler
 - 8000 porous microfibers
 - 300 microns in diameter

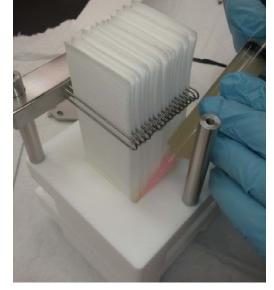
Process

- Water in LCVG absorbs body heat while circulating
- Warm water pumped through Mini-ME
- Valve is opened
- Mini-ME evaporates water vapor, while maintaining liquid water
 - Cools water
- Cooled water is then recirculated through LCVG.
- LCVG water lost due to evaporation (cooling) is replaced from feedwater

ACL & Mini-ME

Proposed operation of ACL

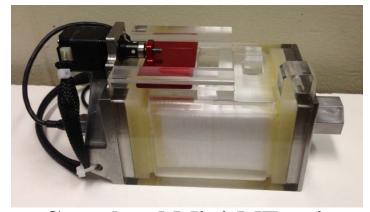
- During a contingency event, the crewmember will turn-on the ACL via a switch on the Display Control Module (DCM)
- The switch will turn on the independent controller
- The pump will start
- The valve will fully open, exposing fibers to vacuum, rejecting heat
- Goals for first generation of hardware:
 - Accommodate a 1200 BTU/hr crewmember metabolic rate
 - Provide 60 minutes of heat rejection
 - Package into PLSS 2.0—rectangular cross section preferred
- The dimensions for the first Mini-ME were dictated by available volume in the PLSS.



First Generation Mini-ME

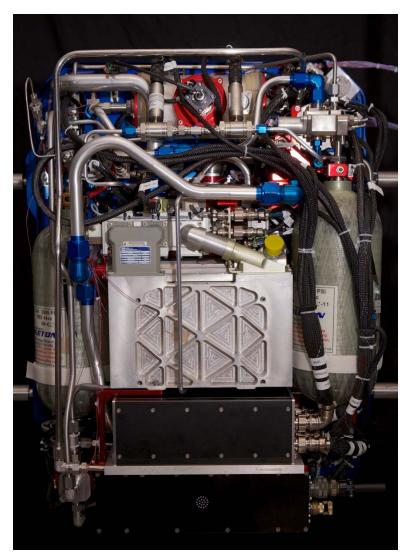
- A rectangular membrane evaporator was designed and constructed in-house.
- A clear, acrylic housing was chosen in order to evaluate membrane integrity
- The fiber cartridge was constructed with 8000 fibers, utilizing a new, layered technique
- Gate valve with small stepper motor

Gate valve chosen due to volumetric constraints within the PLSS volume.


Mini-ME Fabrication

Preliminary Mini-ME testing

- Two units were constructed.
- Preliminary testing results showed heat rejection performance of 95-110W (325-375 BTU/hr)at 50kg/hr flow rate with a 10 degree Celsius outlet temperature.
- Approximately ~10 W of heat leak was observed across the closed gate valve
 - This could cause fiber freezing and loss of feedwater during system standby
- Following preliminary testing, one Mini-ME was installed into the PLSS 2.0 backpack.



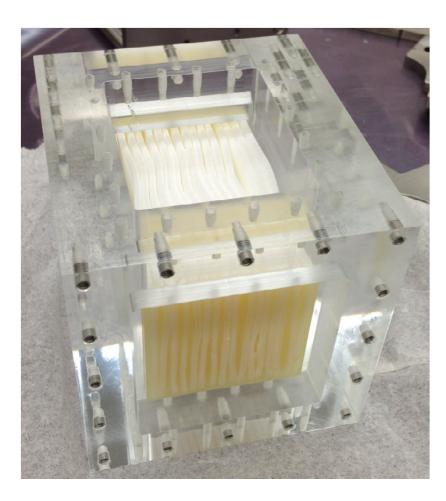
Completed Mini-ME unit

PLSS 2.0

PLSS 2.0

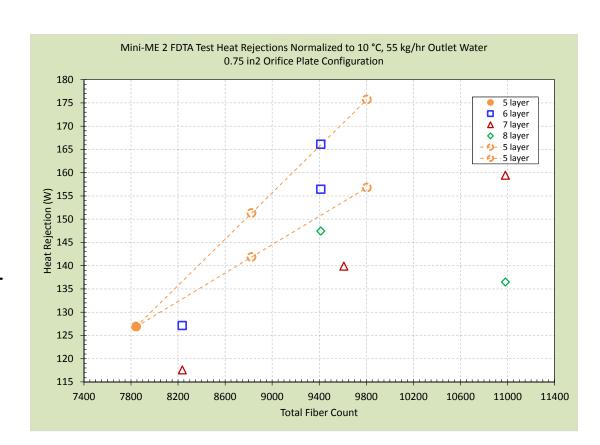
Mini-ME (left), RVP SWME (right)

Subsequent Mini-ME Testing


- Following the preliminary testing of Mini-ME, a study was conducted to:
 - investigate ideal fiber density and packaging in terms of heat rejection
 - Determine smallest valve throat area needed to reject at full capability
- 9 Fiber Density Test Articles (FDTA's) were constructed with different fiber densities and with replaceable valve throat areas.
- Each unit was tested for a total of 24 hours.
- Data from these tests allowed analysts to correlate models to data
- Ideal configuration: 16 bundles of 6 layers (9413 fibers), which produced 165W of heat rejection with a 55kg/hr flow rate

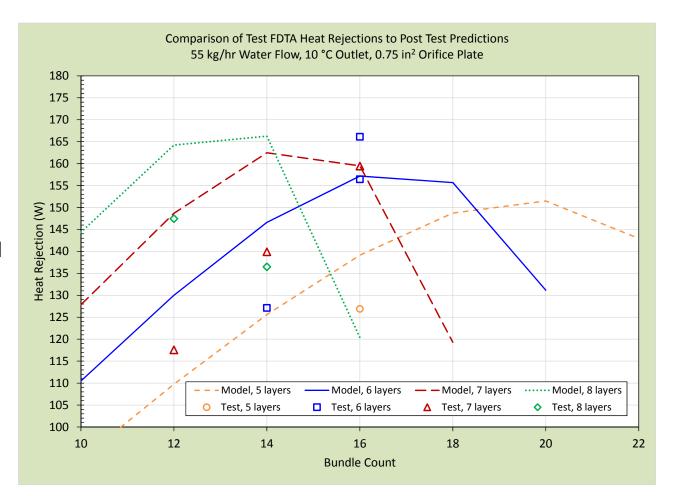
Fiber Density Test Article (FDTA)	Bundle Count	Layers	Nominal Fiber Count	Day 4, 0.75 in2 Orifice Plate, 10°C Outlet Heat Rejection (W)	FDTA Outlet Water Mass Flow (kg/hr)	Normalized (10°C Tout, 55 kg/hr mdot) FDTA Day 4, 0.75 in2 Orifice Plate Heat Rejection (W)
2	16	5	7844	127	55.05	127
5	14	6	8236	127	54.95	127
1	16	6	9413	164	54.3	166
3	16	6	9413	158	55.55	156
8	12	7	8236	118	55.2	118
6	14	7	9609	138	54.25	140
4	16	7	10982	158	54.5	159
9	12	8	9413	148	55.2	147
7	14	8	10982	135	54.4	136
Nominal bundle width (in)			1.85			
Nominal fiber density (fibers/inch)			53			
Nominal fiber exposed length (in)			2.25			

FDTA


Fiber Density Test Article (FDTA)

FDTA Analysis

- Valve throats of 0.75in², 1in² and 4in² were investigated.
 - No difference between
 0.75in² and 4 in²
- Fiber density and packaging:
 - Most data points show that fewer layers yield greater heat rejection for same fiber count
 - Strongly suggests
 optimum packaging is
 higher bundle count and
 fewer layers
 - Limits of this approach would require additional testing



FDTA Analysis

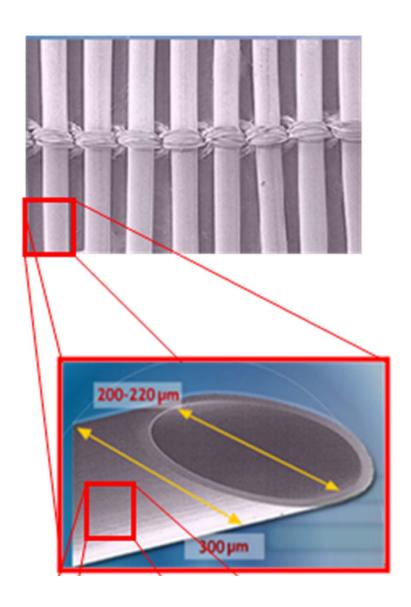
Test predictions and post-test heat rejections

- One dimensional model correlated to FDTA 3 test heat rejection
 - Fiber wall porosity adjusted
 - 11.25% final value
 - Valve orifice choked flow coefficient of 0.6
- Largest overpredictions were those of 12/7, 14/7, and 14/8 TAs
- 7 layers peak behavior not seen in test data

Forward Work

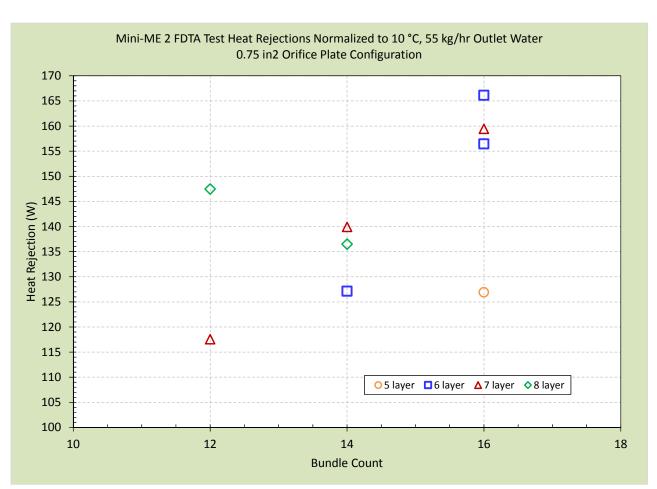
- The Mini-ME and ACL will be tested as an integrated system in PLSS 2.0, beginning in September.
- The next generation of Mini-ME hardware (Mini-ME2) is currently being designed.
 - Goals:
 - New valve with 0W heat leak
 - More heat rejection (350W)
- Mini-ME2 will be tested independently, and ultimately integrated into the next round of PLSS testing (PLSS 2.5).

Acknowledgments



- Grant Bue
- Matt Vogel
- Aaron Colunga
- Colin Campbell
- Carly Watts
- Ian Anchondo

Back-up


FDTA Analysis

Normalized heat rejections plotted with respect to bundle

count and layers - Linear q_{rej} increase

- Linear q_{rej} increase
 of 6 and 7 layer TAs
 vs. bundle count
 - Showed no sign of peaking, contrary to expectations
- 8 layer TA q_{rej}
 decreased vs.
 bundle count
- TA 2 (16/5): fewest fibers, q_{rej} on par with or better than 14/6 and 12/7, which had more fibers

