TFAWS Passive Thermal Paper Session

Thermal Control Design for the Subarcsecond Telescope and BaLloon Experiment (STABLE) Hared Ochoa, Jet Propulsion Laboratory, California Institute of Technology

> Presented By Hared Ochoa

> > Thermal & Fluids Analysis Workshop TFAWS 2014 August 4 - 8, 2014 NASA Glenn Research Center Cleveland, OH

NASA

For planning and Discussion Purposes Only

GRC · 2014

Subarcsecond Telescope And BaLloon Experiment

	Objective Demonstrate 0.1 arc sec pointing stability • Exposure time ~ 1minute • Above 99% of the atmosphere • Visible spectrum • Nighttime • Relatively Low SNR
 Implementation (type III) Coarse Loop – Balloon-Born Interface Test-Bed (BIT) U of Toronto Fine Loop – JPL Telescope (COTS) 3Axis rate sensor (COTS, JPL 7x) Camera (COTS) from UK consortium Fast Steering mirror (COTS) Estimation and control algorithms Launch – Fort Sumner, NM 24 hour flight with 8 hour observation window. 35 – 40 km Altitude 	Key MilestonesProject StartOctober 2012PMSRFebruary 2013Project PDRNovember 2013Project CDR/IIRAug 2014System I&TJanuary 2015Ready to LaunchApril 2015LaunchSeptember 2015

STABLE Payload in the BIT Gondola

For planning and Discussion Purposes Only. Copyright 2014 California Institute of Technology. U.S. Government sponsorship acknowledged

STABLE Payload

STABLE Telescope Layout

TFAWS 2014 – August 4-8, 2014

For planning and Discussion Purposes Only. Copyright 2014 California Institute of Technology. U.S. Government sponsorship acknowledged

Mission Concept

TFAWS 2014 – August 4-8, 2014

For planning and Discussion Purposes Only. Copyright 2014 California Institute of Technology. U.S. Government sponsorship acknowledged

Environment Parameters

- Air Temperature
 - Public Radiosonde data University of Wyoming
- Convection
 - Leveraged
 coefficients from
 LDSD project
 - Forced and Natural Convection

TFAWS 2014 - August 4-8, 2014

Temperature distribution

- Air Temperature
 - Initially estimates were very cold
 - Investigated distribution of air temperature at float altitudes
 - Distribution showed skewed characteristics

Additional Environmental Parameters

- Solar flux = f(solar zenith, altitude)
- Albedo float: CERES database for all three sites
- Simplified model using blackball radiometer observations
- Broke down "Ground IR" and "Sky IR", via observed estimated air and ground temperature near launch sites

TFAWS 2014 - August 4-8, 2014

Hardware Electronics

Operating/Non-Operating

Telescope

- Non-linear mechanical interfaces and CTE mismatches
- Minimal STOP analysis limits understanding of thermal-optical sensitivity
- Characterize Thermal Environment
 - Use of inflight PRT's for future flights to reference.

	Op Min	Op Max	Non-op Min	Non-op Max
Component	[°C]	[°C]	[°C]	[°C]
CDH Box	-15	65	-15	65
Linux Slice	-35	60	-35	60
ARS	-30	30	-40	45
SM Electronics	-30	50	-30	50
Camera	-30	50	-40	70
Refocusing Stage	-20	30	-25	45
SM Assembly	-72	30	-80	60
PMAssembly	-52	10	-80	60
CFT Struts	-75	2	-80	60

Thermal Requirements

• Telescope

- Performance sensitive to mirror gradients
- Shift in focus during observation must be within error budget
- Shift in focus during flight must be within RFS capabilities
- Minimal STOP analysis limits understanding of thermal-optical sensitivity

SPATIAL Temperature Gradients Requirements

Requirement During Observation phase only

Component	Geometry/Direction	∆Т(К)
CFT Struts	Horizontally	22
Primary Mirror	Back to Front	8
	Radially Outward	27
Secondary Mirror	Back to Front	1
Optical Bench	FSM to CAM	2

TEMPORAL Temperature

Gradient Requirements

Requirement during observation phase		
only		
Telescope	Temporal AFG	
Hardware	ΔT [K /1 0 min]	
CFT Struts	1.5	
Bipods	1.5	
Optics Bench	1.5	
Mandrel	1.5	
Strut Mounts on SM	1.5	
Primary Mirror	1.5	
Primary Mirror Box	1.5	
Secondary Mirror	1.5	
Secondary Mirror Stack	1.5	

- Passive Design
- White Paint finish on Gondola
- Bare aluminum finish on Telescope
- Pointing Restrictions During Day
- OBA Cold Bias
 - Cold bias Design
 - Black Kapton Finish
 - Thermostat controlled Heaters
 - Heater Sizing for Cold Case

Thermal Model

- Thermal Desktop
 GMM/TMM
 - Gondola Model by University of Toronto Partner
 - Telescope and Payload JPL
 - Transient analysis
 - CBE heat loads, dimensions, materials, interfaces, and mass
 - Internal and external air convection
 - Heaters, thermostats, and coatings

Model Results

- Telescope Predicts
 - <6C Margin for CFT strut hot case
 - Strut not protected from sun
 - Night Temperatures plummet, still holding some margin

Instrument Predicts

- Good Margin on Most Hardware
- Camera noticeably hotter when running.
- Camera thermally isolated from Optics Bench

OB components Non-Op AFT

TFAWS 2014 - August 4-8, 2014

-60

Model Results

- Spatial Gradient
 Requirements
 - SM gradient and OB gradient small factors to optical error budget
- Temporal Stability Requirement
 - Sensitivity to individual components not fully understood

Spatial Gradient Requirement

Since CDR Tabletop

- RFS Performance
 - Thrust and homing repeatability issues
 - Min op-temperature increase
 - New heater and thermostat specs
- RFS Conductance Test
 - Original assumption overestimated conductance
 - Reduced Margin in Camera AFT's
- Telescope surface coating
 - Concerns of pointing control during day
 - Bare aluminum in sun

- Passive Control Architecture
 - Although low-cost, need adequate reserved resources (i.e. power, radiator area)
- Thermal-Optical-Mechanical System
 - Telescope performance driven by extreme balloon environments and COTS mechanical design
 - Push for an athermalized telescope design early in project phase
- COTS hardware information
 - High risk, low cost projects places less priority on component level TVAC testing and prefer to test at the final assembly level only
 - Place larger weight on COTS hardware information that is readily available during early trade studies

- Eric Sunada, Group Supervisor, 353K, JPL
- Robert Effinger, Systems Engineer, 313F, JPL
- Rachael Tompa, Student Co-op, 353K, JPL
- Michael Pauken, Thermal Engineer, 353K, JPL

ALL RADIOSONDE DATA

TFAWS 2014 - August 4-8, 2014

For planning and Discussion Purposes Only. Copyright 2014 California Institute of Technology. U.S. Government sponsorship acknowledged

Allowable Flight Temperatures

STABLE HARDWARE	Temperatures Apply at	All	Allowable Flight [C]			
		Opera		NonOpe	NonOperational	
		Min	Max	Min	Max	
Telescope Assembly						
Secondary Mirror	Bulk Avg	-72	30	-80	60	
CFT Struts	Surface Extreme Node	-75	2	-80	60	
CFT strut mount on PM	bulk avg	N/A	N/A	-73	60	
CFT strut mount on PM	bulk avg	N/A	N/A	-35	60	
Primary Mirror Box	Bulk Avg Extreme node	50	10	-80	60	
Primary Mirror	Bulk Avg	-52	10	-80	60	
Primary Mirror Mandrel	Bulk Avg	-48	10	-80	60	
OB Assembly						
Structures						
Aluminum Bipods	Surface Extreme Node	-40	17	-65	60	
Optics Bench	Surface Extreme Node	-25	20	-65	60	
Optics						
FSM Optic Mount	Bulk Avg	-50	55	-50	55	
FSM Stack	Bulk Avg	-30	60	-30	60	
Fold Mirror	Bulk Avg	-45	40	-65	60	
Bobcat Imperx Camera	Surface Extreme Node	-30	50	-40	70	
Refocusing Stage (RFS) Bench mount	Bulk Avg	-20	30	-25	45**	
Electronics						
CDH Bench Mount	Bulk Avg	-15	65	-15	65	
Linux Slice Mount	Bulk Avg	-35	60	-35	60	
FSM Electronics Box (Bench Mount)	Bulk Avg	-30	50	-30	50	
ARS Bench Mount	Bulk Avg	-30	30	-40	45**	

** Per PDR RFA, new Ground handling AFT

TFAWS 2014 - August 4-8, 2014