
TFAWS Passive Thermal Paper Session

Applications for Phase Change Material (PCM) Heat Sinks William G. Anderson, Peter Ritt,

Calin Tarau, and Jens Weyant

Presented By Bill Anderson

Thermal & Fluids Analysis Workshop TFAWS 2016 August 1-5, 2016 NASA Ames Research Center Mountain View, CA

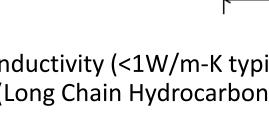
Agenda

PCM Overview

- General Functionality
- Common PCMs
- Thermal Storage with Venting Systems
- Real World Applications

Technology Overview

- PCM absorbs thermal energy and stores it during a solid to liquid phase transition
- This allows temperature to be maintained near the melting point of the PCM

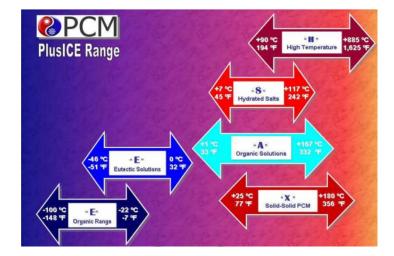


Basics

 Phase Change Material (PCM) utilizes latent heat of fusion to absorb energy

Temperature (T)

- Typically 1-2 order of magnitudes higher storage than specific heat of common materials
- Benefits:
 - Heat storage
 - Weight
 - Compatibility
 - Reliable
 - Passive
 - No Moving Parts
- Limitations
 - Low Thermal Conductivity (<1W/m-K typically)
 - Cost Paraffins (Long Chain Hydrocarbons)


 $\mathbf{Q}_{\mathsf{sensible}}$

Q_{PCM}

Heat (Q)

PCM Selection

- Things to keep in mind:
 - Melt range(s)
 - Compatibility with base metal
 - Type of PCM
 - Purity
 - Capacity
 - Driven by latent heat

 Once down-selected, compare the storage capacity based on the latent heat using design parameters for fin thickness, volume, etc.

РСМ	Melt Temperature Range (°C)	Fin Volume (%)	Latent Heat (kJ/kg)	PCM Mass (kg)	Heat Storage (kJ)
Α	60 - 62	10	240	2.1	504
В	61 - 63	10	230	2.0	460
С	60 - 62	10	266	1.8	478.8

Types of PCM

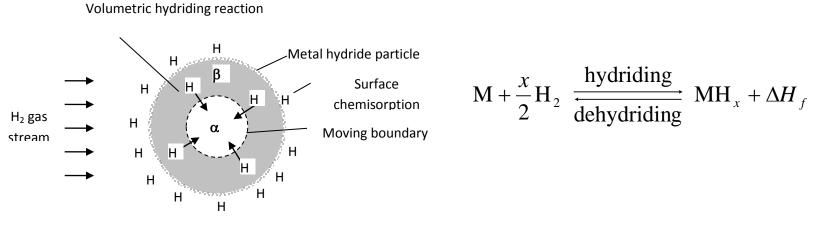
Property or Characteristic	Paraffin Wax	Hydrated Salt	Metallics	
Heat of Fusion	High	High	Med.	
Thermal conductivity	Very Low	High	Very High	
Melt Temperature (°C)	-20 to 100+	0 to 100+	150 to 800+	
Latent Heat (kJ/kg)	200 to 280	60 to 300	25 to 100	
Corrosive	Non-Corrosive	Corrosive	Varies	
Economics	\$ to \$\$	\$ to \$\$	\$\$ to \$\$\$	
	Stable	Unstable over	Stable	
Thermal Cycling	Stable	Repeated Cycles		
Weight	Medium	Light	Heavy	

Common Paraffin Wax

- Paraffin are most common PCM for significant life
 - Chemically compatible with metals
 - Large latent heat
 - Wide operating range
- List below shows a few PCMs with melt range favorable for most electronics.
- List of available PCMs is much more extensive based on melt temperature.

Examples of Paraffins	C ₃₆ H ₇₄	C ₃₂ H ₆₆	$C_{30}H_{62}$
Density _{solid} (kg/m³)	857	809	810
Latent Heat (kJ/kg)	223	261	249
T _{melt} (°C)	72 to 76	66 to 70	59 to 66

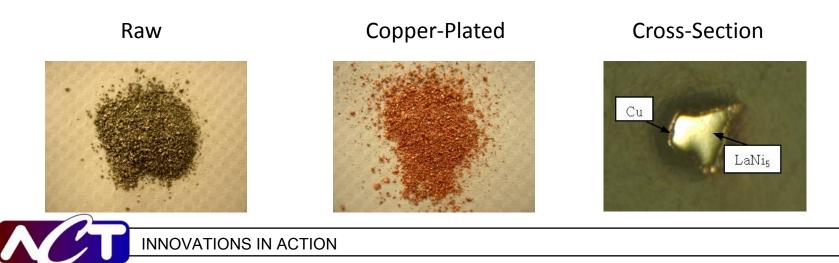
Agenda


- PCM Overview
- Thermal Storage with Venting Systems
 - Sublimators
 - Vapor Venting
 - Hydrides
- Real World Applications

Thermal Storage – Vapor Venting

- Solid/liquid phase change is the preferred method when there are multiple thermal cycles
- Thermal storage with liquid/vapor phase change often is superior with heat rejection with one-two applications per mission
 - Vapor is normally vented
- Sublimators are often used in manned spacecraft during ascent and descent, when no external heat sink is available
 - Liquid-Ice-Vapor transition
 - Works only at high altitudes, with atmospheric pressure below the triple point.
- Other fluids with higher vapor pressure required for applications close to earth
 - Methanol works well
 - Latent heat ~ 1100 kJ/kg, vs. ~ 250 kJ/kg for waxes

Hydride Thermal Storage


- Hydrides can also be used for thermal storage
 - Absorption of hydrogen releases heat
 - Heating hydride with hydrogen releases hydrogen, an endothermic reaction
 - Takes advantage of the fact that hydrogen easily permeates into metals

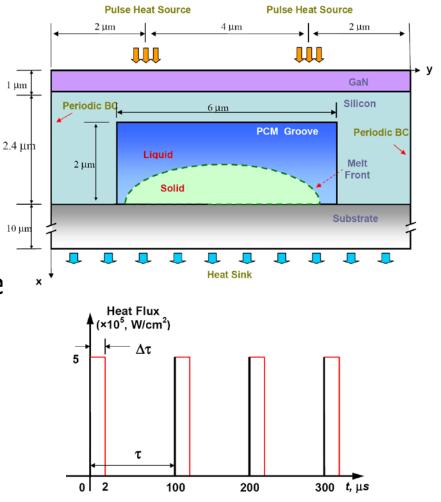
- Hydrides have a much higher thermal storage per unit volume than PCM
 - LaNi5, has a theoretical heat storage capacity of 1200kJ/liter
 - Paraffin wax PCM has a heat storage capacity of 160-200kJ/liter.

Hydride Thermal Storage

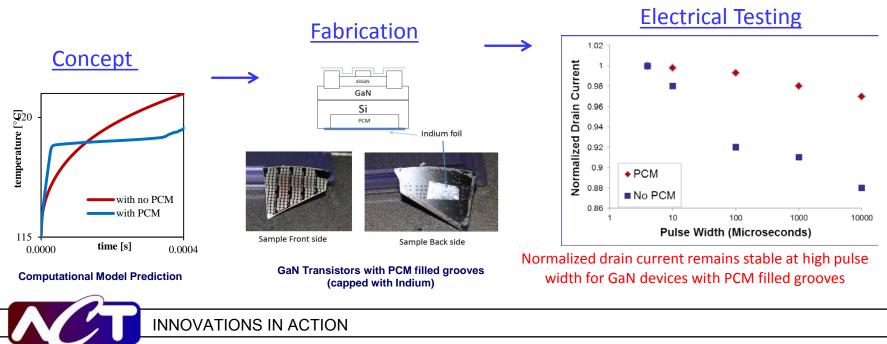
- With multiple hydriding/dehydriding cycles, high volume strains lead to "decrepitation" (or pulverization) of metal hydrides
 - Micron size particles
 - Very low thermal conductivity, ~ 0.1 W/m K)
- Can micro-encapsulate hydrides to prevent pulverization
 - Increases thermal conductivity to 3 to 5 W/m K
 - Hydrogen permeates easily through the copper

Agenda

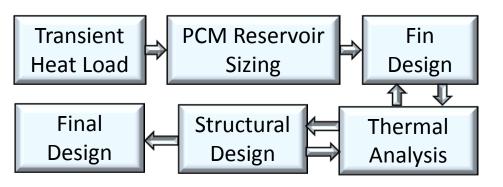
- PCM Overview
- Thermal Storage with Venting Systems
- Real World Applications
 - On-chip PCM for pulsed power
 - Electronics heat sinks, particularly during loss of coolant
 - PCM heat exchangers
 - Vapor Venting Systems
 - Hydride Thermal Storage


PCM Applications

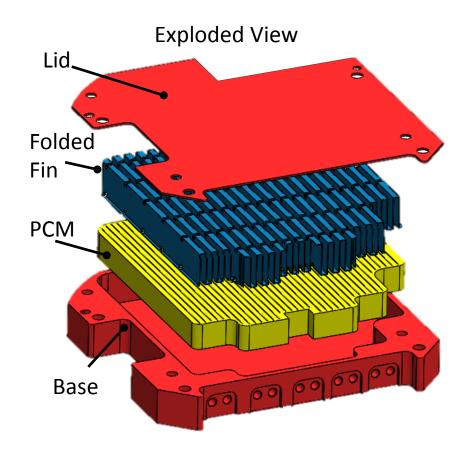
- Types of applications include:
 - Storage for one-time use applications
 - Protection from momentary failure
 - Dampening of heat loads in pulse mode operation
- PCM is used for a variety of applications:
 - High powered electronics
 - Direct Energy Weapons (DEW)
 - HVAC
 - Primary or Redundant Thermal Management
 - Venting


On-Chip PCM for Pulsed Power

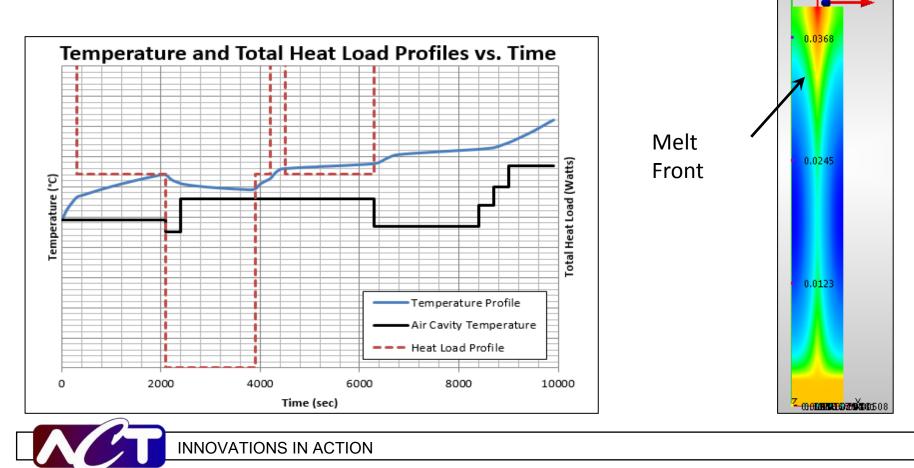
- High power semiconductors for communication often operate in pulsed mode
 - Rapid temperature transients are continuously experienced within the die.
 - Typical duty cycle of 2 to 10%
- Add PCM near individual gates to improve performance
 - PCM melts when operating, then refreezes
- Need to calculate minimum distance to avoid parasitic capacitance


On-Chip PCM for Pulsed Power

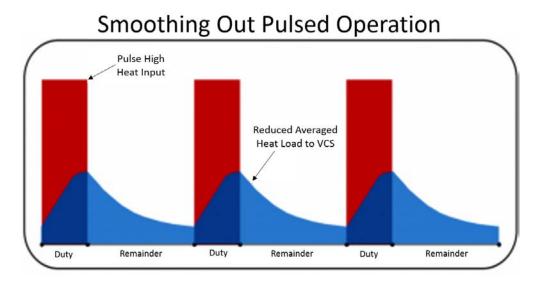
- High junction temperature is the biggest challenge in high powered pulsed RF device applications such as radar and communication applications
- Experiments Successful integration of PCM in the HEMT substrate achieved improved electrical performance at high temperatures


Electronics Heat Sinks

- Electronics operating with transient heat loads or one-timeuse can benefit from PCM
- Design Process

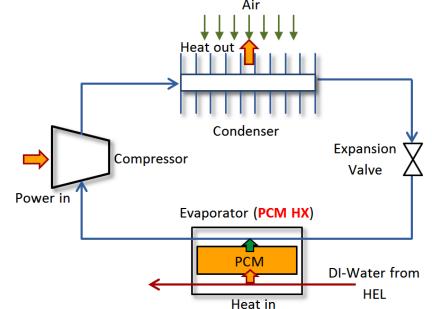

- Transient thermal modeling is used to confirm heat sink design
 - Captures heat transfer to PCM
 - Melt front vs. time
 - System ΔT

Electronics Heat Sinks

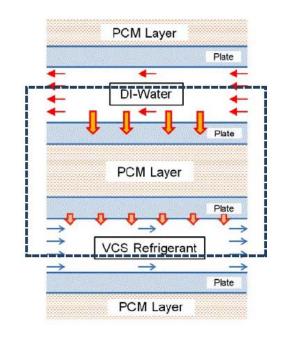

 Results (blue) plotted against heat load (red) and varying ambient (black)

ISO9001 & AS9100

PCM Heat Exchanger


- PCM Heat Exchangers are used to dampen pulsed operation in order to design a heat sink for average power.
- No matter what the ultimate sink is, this method can reduce size/weight for duty cycle operation

INNOVATIONS IN ACTION


Heat Exchangers for DEW

- Directed Energy Weapon (DEW) systems require tight temperature control near 25°C – Vapor Compression System (VCS)
- Duty Cycle Operation typically less than 40% "on" time
- PCM exchanges heat between the hot fluid coming from the lasers and ultimate vapor compression heat sink.
- Similar design considerations
 - Determine volume based on duty cycle and heat load
 - Minimize gradient during melt
 - Ensure VCS refreezes the PCM during the "off" time

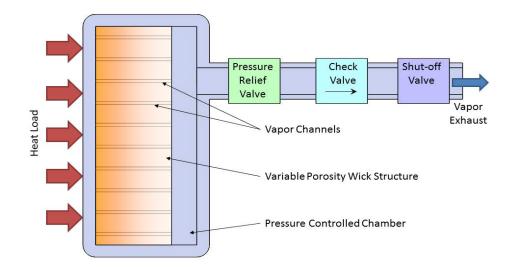
Heat Exchangers for DEW

- Two Loop Cooling System with an intermediate PCM heat exchanger
- PCM heat exchanger has series of 3 layers
 - PCM layer between each coolant loop and refrigerant layer absorbs heat duty pulse loads
 - Heat released to VC refrigerant over the entire cycle time
 - Series design allows design to scale
- Significant potential for system level volume and mass reduction
- ACT has manufactured sub-scale systems cooling up to 30 kW_t.

	System with PCM HX	System without PCM HX	
Compressor	40 kg	180 kg	
Condenser	146	379	
Heat Exchangers	79	7.5	
Total	265 kg	576 kg	
Weight Reduction	311 kg (54%)		

INNOVATIONS IN ACTION

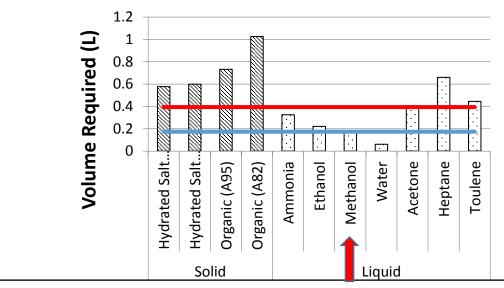
Power Plant/ECU Dry Cooling


- ACT is developing a PCM Supplemental Cooling System for power plants for ARPA-E, to enhance the overall efficiency
 - PCM melts during the hottest part of the day, providing additional cooling without using water
 - PCM is refrozen during the cooler night hours
- Under an Army Phase II SBIR, ACT is also developing an Environmental Control Unit (military air conditioner) with integrated thermal storage
 - Objective is to reduce fuel consumption on military bases
 - PCM provides additional cooling for several hours during the hottest part of the day, when the ECU is least efficient
 - Again, refreeze at night when the ECU is most efficient
- Both programs use hydrated salts due to their significantly lower cost
- Both Programs are still in the early stages

Vapor Venting Systems

When would you use liquid-vapor phase change thermal storage?

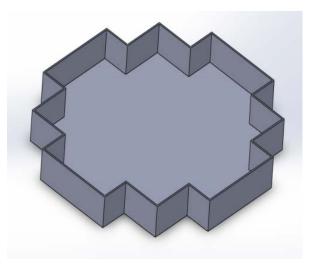
- Several cycles per mission (can be recharged)
- Volume and weight constrained systems
- High heat load and short time durations
- Large lateral and normal g-loading environments
- Long duration storage
- Liquid stored in a variable porosity wick structure
- Hydrides can also be used


INNOVATIONS IN ACTION

Vapor Venting- Latent Heat Storage

• The following equation was used to determine the necessary volume for latent heat storage:

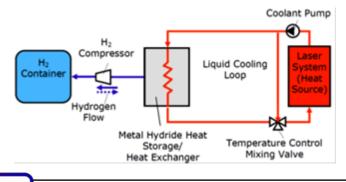
$$Q = mh_{fg}$$

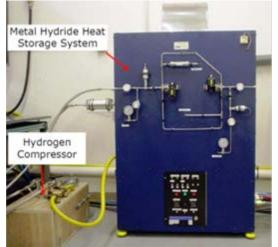

- Four of the materials investigated for latent heat storage are capable of fitting in the available volume (red line).
- However, a wick structure and supporting posts must be fitted inside the casing which reduces the available volume (blue line)
- Methanol selected (needs to operate when water is frozen)
- Smaller volume than PCM

INNOVATIONS IN ACTION

Vapor Venting

- Cold plate capable of dissipating 1 kW for 120 seconds
- High g-loading
- Maximum weight: 1.5 lbs.
- Limited Volume: 0.4 L
- Copper wick
- Engineering units have been fabricated and tested at ACT
- Easy to vent for testing, and then refill
- Significant weight reduction if use carbon wick, but requires development.





Hydride Thermal Storage

- ACT developed and successfully tested a hydride thermal storage system capable of multiple cycles in an SBIR
 - Micro-encapsulated hydrides
 - Compressor to recompress hydrogen to drive into hydride
 - Not practical
 - Compressor weight too high

INNOVATIONS IN ACTION

Hydride Thermal Storage

- Hydrides more suited for single use system
 - Eliminates storage tank and compressor
 - Can easily be recharged.
- Technology Readiness Level ~ 4
- Further Development Needed
 - Hermeticity for long shelf life. The hydride system must be hermetic, particularly for low temperature storage. Cannot allow air to leak in.
 - Structural stability under high g-loading, shock, and vibration.
 - Heat collection from the electronics into the hydrides.
 - Methods to increase metal hydride thermal conductivity.

Comparison of Mass/Volume

- Estimated masses and volume
 - Rough rule of thumb for the PCM that the enclosure and conductivity enhancements double the mass and volume
 - Methanol with a copper wick weighs more than the PCM system, but 1/4 of the volume
 - Methanol with carbon wick: 1/3 the mass, 1/4 of the volume
 - Hydrides have 1/2 the mass, but 7% of the volume of the PCM

Heat Energy	System	Mass	Volume
	PCM	1.5 kg	2.0 liter
1 kW for 120 sec = 0.12	45% Copper	2.36 kg	0.54 liter
MJ	45% Carbon	0.52 kg	0.54 liter
	LaNi ₅	0.78 kg	0.13 liter

Conclusions

- Applications include on-chip cooling, electronics heat sinks, heat exchangers for DEW system, power plants, HVAC, and one/two use per mission
 - Energy storage ranges from mJ to GJ
- PCM can be used for
 - Thermal storage device
 - Heat exchanger to dampen duty cycle electronics
- Technology Readiness Level ranges from 4 (hydrides) to 9 (electronics cooling, sublimation)
- PCM selection depends on component max operating temperature and boundary conditions of your system
 - Temperatures from below 0°C to hundreds of °C

TFAWS Passive Thermal Paper Session

Applications for Phase Change Material (PCM) Heat Sinks

William G. Anderson, Peter Ritt, Calin Tarau, and Jens Weyant

> Presented By Bill Anderson

Thermal & Fluids Analysis Workshop TFAWS 2016 August 1-5, 2016 NASA Ames Research Center Mountain View, CA

